ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2000-02-26
    Description: The Caenorhabditis elegans Bcl-2-like protein CED-9 prevents programmed cell death by antagonizing the Apaf-1-like cell-death activator CED-4. Endogenous CED-9 and CED-4 proteins localized to mitochondria in wild-type embryos, in which most cells survive. By contrast, in embryos in which cells had been induced to die, CED-4 assumed a perinuclear localization. CED-4 translocation induced by the cell-death activator EGL-1 was blocked by a gain-of-function mutation in ced-9 but was not dependent on ced-3 function, suggesting that CED-4 translocation precedes caspase activation and the execution phase of programmed cell death. Thus, a change in the subcellular localization of CED-4 may drive programmed cell death.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, F -- Hersh, B M -- Conradt, B -- Zhou, Z -- Riemer, D -- Gruenbaum, Y -- Horvitz, H R -- New York, N.Y. -- Science. 2000 Feb 25;287(5457):1485-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Biology, 68-425, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10688797" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Animals ; Animals, Genetically Modified ; *Apoptosis ; Apoptosis Regulatory Proteins ; Caenorhabditis elegans/*cytology/embryology/genetics/*metabolism ; *Caenorhabditis elegans Proteins ; Calcium-Binding Proteins/genetics/*metabolism ; *Caspases ; Cysteine Endopeptidases/genetics/metabolism ; Genes, Helminth ; Helminth Proteins/genetics/*metabolism ; Immunohistochemistry ; Mitochondria/metabolism ; Mutation ; Nuclear Envelope/*metabolism ; Phenotype ; Proto-Oncogene Proteins/genetics/*metabolism ; Proto-Oncogene Proteins c-bcl-2 ; Repressor Proteins/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-03-08
    Description: Larval development of the nematode Caenorhabditis elegans is controlled by the activities of four classes of chemosensory neurons. The choice between normal development and development into a specialized larval form called a dauer larva is regulated by competing environmental stimuli: food and a dauer pheromone. When the neuron classes ADF, ASG, ASI, and ASJ are killed, animals develop as dauer larvae regardless of environmental conditions. These neurons might sense food or dauer pheromone, or both, to initiate the specialized differentiation of many cell types that occurs during dauer formation. Entry into and exit from the dauer stage are primarily controlled by different chemosensory neurons. The analysis of mutants defective in dauer formation indicates that the chemosensory neurons are active in the absence of sensory inputs and that dauer pheromone inhibits the ability of these neurons to generate a signal necessary for normal development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bargmann, C I -- Horvitz, H R -- GM24663/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1991 Mar 8;251(4998):1243-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge 02139.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2006412" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis/*growth & development ; Cell Survival ; Larva ; Models, Neurological ; Mutation ; Neurons, Afferent/cytology/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-07-18
    Description: The elimination of unnecessary or defective cells from metazoans occurs during normal development and tissue homeostasis, as well as in response to infection or cellular damage. Although many cells are removed through caspase-mediated apoptosis followed by phagocytosis by engulfing cells, other mechanisms of cell elimination occur, including the extrusion of cells from epithelia through a poorly understood, possibly caspase-independent, process. Here we identify a mechanism of cell extrusion that is caspase independent and that can eliminate a subset of the Caenorhabditis elegans cells programmed to die during embryonic development. In wild-type animals, these cells die soon after their generation through caspase-mediated apoptosis. However, in mutants lacking all four C. elegans caspase genes, these cells are eliminated by being extruded from the developing embryo into the extra-embryonic space of the egg. The shed cells show apoptosis-like cytological and morphological characteristics, indicating that apoptosis can occur in the absence of caspases in C. elegans. We describe a kinase pathway required for cell extrusion involving PAR-4, STRD-1 and MOP-25.1/-25.2, the C. elegans homologues of the mammalian tumour-suppressor kinase LKB1 and its binding partners STRADalpha and MO25alpha. The AMPK-related kinase PIG-1, a possible target of the PAR-4-STRD-1-MOP-25 kinase complex, is also required for cell shedding. PIG-1 promotes shed-cell detachment by preventing the cell-surface expression of cell-adhesion molecules. Our findings reveal a mechanism for apoptotic cell elimination that is fundamentally distinct from that of canonical programmed cell death.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3416925/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3416925/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Denning, Daniel P -- Hatch, Victoria -- Horvitz, H Robert -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Aug 9;488(7410):226-30. doi: 10.1038/nature11240.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22801495" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Caenorhabditis elegans/*cytology/*embryology/enzymology/genetics ; Caenorhabditis elegans Proteins/genetics/*metabolism ; Carrier Proteins/metabolism ; *Caspases/deficiency/genetics/metabolism ; Cell Adhesion Molecules/deficiency/metabolism ; Cell Shape ; Embryo, Nonmammalian/*cytology/embryology/*enzymology ; Embryonic Development ; Endocytosis ; Multiprotein Complexes/chemistry/metabolism ; Mutation ; Protein-Serine-Threonine Kinases/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...