ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical chemistry accounts 97 (1997), S. 164-176 
    ISSN: 1432-2234
    Keywords: Key words: Coupled-cluster theory ; Triples corrections ; Multiple basis sets ; Natural orbitals ; Integral-direct methods
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract. Multiple basis sets are used in calculations of perturbational corrections for triples replacements in the framework of single-reference coupled-cluster theory. We investigate a computational procedure, where the triples correction is calculated from a reduced space of virtual orbitals, while the full space is employed for the coupled-cluster singles-and-doubles model. The reduced space is either constructed from a prescribed unitary transformation of the virtual orbitals (for example into natural orbitals) with subsequent truncation, or from a reduced set of atomic basis functions. After the selection of a reduced space of virtual orbitals, the singles and doubles amplitudes obtained from a calculation in the full space are projected onto the reduced space, the remaining set of virtual orbitals is brought into canonical form by diagonalizing the representation of the Fock operator in the reduced space, and the triples corrections are evaluated as usual. The case studies include the determination of the spectroscopic constants of N2, F2, and CO, the geometry of O3, the electric dipole moment of CO, the static dipole polarizability of F−, and the Ne⋯Ne interatomic potential.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...