ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-06-25
    Description: Excessive sodium (Na+) in salinized soils inhibits plant growth and development. A mutation in the SOS3 gene renders Arabidopsis thaliana plants hypersensitive to Na+-induced growth inhibition. SOS3 encodes a protein that shares significant sequence similarity with the calcineurin B subunit from yeast and neuronal calcium sensors from animals. The results suggest that intracellular calcium signaling through a calcineurin-like pathway mediates the beneficial effect of calcium on plant salt tolerance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, J -- Zhu, J K -- New York, N.Y. -- Science. 1998 Jun 19;280(5371):1943-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9632394" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Arabidopsis/*genetics/*growth & development/metabolism ; *Arabidopsis Proteins ; Binding Sites ; Calcineurin/chemistry ; Calcium/*metabolism/pharmacology ; Calcium-Binding Proteins/chemistry ; Chromosome Mapping ; Cloning, Molecular ; Genes, Plant ; Ion Transport ; Molecular Sequence Data ; Mutation ; Open Reading Frames ; Plant Proteins/*chemistry/*genetics ; Saccharomyces cerevisiae/chemistry ; Signal Transduction ; Sodium/metabolism/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2000-07-07
    Description: Domestication of many plants has correlated with dramatic increases in fruit size. In tomato, one quantitative trait locus (QTL), fw2.2, was responsible for a large step in this process. When transformed into large-fruited cultivars, a cosmid derived from the fw2.2 region of a small-fruited wild species reduced fruit size by the predicted amount and had the gene action expected for fw2.2. The cause of the QTL effect is a single gene, ORFX, that is expressed early in floral development, controls carpel cell number, and has a sequence suggesting structural similarity to the human oncogene c-H-ras p21. Alterations in fruit size, imparted by fw2.2 alleles, are most likely due to changes in regulation rather than in the sequence and structure of the encoded protein.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Frary, A -- Nesbitt, T C -- Grandillo, S -- Knaap, E -- Cong, B -- Liu, J -- Meller, J -- Elber, R -- Alpert, K B -- Tanksley, S D -- New York, N.Y. -- Science. 2000 Jul 7;289(5476):85-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Breeding and Department of Plant Biology, 252 Emerson Hall, Cornell University, Ithaca, NY 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10884229" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Biological Evolution ; Cell Count ; Cell Division ; Cloning, Molecular ; Contig Mapping ; Fruit/growth & development ; *Genes, Plant ; Genetic Complementation Test ; Humans ; Lycopersicon esculentum/cytology/*genetics/growth & development ; Molecular Sequence Data ; Mutation ; Oncogene Protein p21(ras)/chemistry/genetics ; Plant Proteins/chemistry/*genetics ; Plant Structures/cytology/genetics ; Plants, Genetically Modified ; Protein Structure, Secondary ; *Quantitative Trait, Heritable ; Sequence Alignment ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2002-04-06
    Description: We have produced a draft sequence of the rice genome for the most widely cultivated subspecies in China, Oryza sativa L. ssp. indica, by whole-genome shotgun sequencing. The genome was 466 megabases in size, with an estimated 46,022 to 55,615 genes. Functional coverage in the assembled sequences was 92.0%. About 42.2% of the genome was in exact 20-nucleotide oligomer repeats, and most of the transposons were in the intergenic regions between genes. Although 80.6% of predicted Arabidopsis thaliana genes had a homolog in rice, only 49.4% of predicted rice genes had a homolog in A. thaliana. The large proportion of rice genes with no recognizable homologs is due to a gradient in the GC content of rice coding sequences.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yu, Jun -- Hu, Songnian -- Wang, Jun -- Wong, Gane Ka-Shu -- Li, Songgang -- Liu, Bin -- Deng, Yajun -- Dai, Li -- Zhou, Yan -- Zhang, Xiuqing -- Cao, Mengliang -- Liu, Jing -- Sun, Jiandong -- Tang, Jiabin -- Chen, Yanjiong -- Huang, Xiaobing -- Lin, Wei -- Ye, Chen -- Tong, Wei -- Cong, Lijuan -- Geng, Jianing -- Han, Yujun -- Li, Lin -- Li, Wei -- Hu, Guangqiang -- Huang, Xiangang -- Li, Wenjie -- Li, Jian -- Liu, Zhanwei -- Li, Long -- Liu, Jianping -- Qi, Qiuhui -- Liu, Jinsong -- Li, Li -- Li, Tao -- Wang, Xuegang -- Lu, Hong -- Wu, Tingting -- Zhu, Miao -- Ni, Peixiang -- Han, Hua -- Dong, Wei -- Ren, Xiaoyu -- Feng, Xiaoli -- Cui, Peng -- Li, Xianran -- Wang, Hao -- Xu, Xin -- Zhai, Wenxue -- Xu, Zhao -- Zhang, Jinsong -- He, Sijie -- Zhang, Jianguo -- Xu, Jichen -- Zhang, Kunlin -- Zheng, Xianwu -- Dong, Jianhai -- Zeng, Wanyong -- Tao, Lin -- Ye, Jia -- Tan, Jun -- Ren, Xide -- Chen, Xuewei -- He, Jun -- Liu, Daofeng -- Tian, Wei -- Tian, Chaoguang -- Xia, Hongai -- Bao, Qiyu -- Li, Gang -- Gao, Hui -- Cao, Ting -- Wang, Juan -- Zhao, Wenming -- Li, Ping -- Chen, Wei -- Wang, Xudong -- Zhang, Yong -- Hu, Jianfei -- Wang, Jing -- Liu, Song -- Yang, Jian -- Zhang, Guangyu -- Xiong, Yuqing -- Li, Zhijie -- Mao, Long -- Zhou, Chengshu -- Zhu, Zhen -- Chen, Runsheng -- Hao, Bailin -- Zheng, Weimou -- Chen, Shouyi -- Guo, Wei -- Li, Guojie -- Liu, Siqi -- Tao, Ming -- Wang, Jian -- Zhu, Lihuang -- Yuan, Longping -- Yang, Huanming -- 1 RO1 ES09909/ES/NIEHS NIH HHS/ -- New York, N.Y. -- Science. 2002 Apr 5;296(5565):79-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Beijing Genomics Institute/Center of Genomics and Bioinformatics, Chinese Academy of Sciences, Beijing 101300, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11935017" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics ; Base Composition ; Computational Biology ; Contig Mapping ; DNA Transposable Elements ; DNA, Intergenic ; DNA, Plant/chemistry/genetics ; Databases, Nucleic Acid ; Exons ; Gene Duplication ; Genes, Plant ; *Genome, Plant ; Genomics ; Introns ; Molecular Sequence Data ; Oryza/*genetics ; Plant Proteins/chemistry/genetics ; Polymorphism, Genetic ; Repetitive Sequences, Nucleic Acid ; *Sequence Analysis, DNA ; Sequence Homology, Nucleic Acid ; Software ; Species Specificity ; Synteny
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-12-19
    Description: Several neurotransmitters act through G-protein-coupled receptors to evoke a 'slow' excitation of neurons. These include peptides, such as substance P and neurotensin, as well as acetylcholine and noradrenaline. Unlike the fast (approximately millisecond) ionotropic actions of small-molecule neurotransmitters, the slow excitation is not well understood at the molecular level, but can be mainly attributed to suppressing K(+) currents and/or activating a non-selective cation channel. The molecular identity of this cation channel has yet to be determined; similarly, how the channel is activated and its relative contribution to neuronal excitability induced by the neuropeptides are unknown. Here we show that, in the mouse hippocampal and ventral tegmental area neurons, substance P and neurotensin activate a channel complex containing NALCN and a large previously unknown protein UNC-80. The activation by substance P through TACR1 (a G-protein-coupled receptor for substance P) occurs by means of a unique mechanism: it does not require G-protein activation but is dependent on Src family kinases. These findings identify NALCN as the cation channel activated by substance P receptor, and suggest that UNC-80 and Src family kinases, rather than a G protein, are involved in the coupling from receptor to channel.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2810458/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2810458/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lu, Boxun -- Su, Yanhua -- Das, Sudipto -- Wang, Haikun -- Wang, Yan -- Liu, Jin -- Ren, Dejian -- R01 NS055293/NS/NINDS NIH HHS/ -- R01 NS055293-01A1/NS/NINDS NIH HHS/ -- England -- Nature. 2009 Feb 5;457(7230):741-4. doi: 10.1038/nature07579. Epub 2008 Dec 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of Pennsylvania, 415 S. University Avenue, Philadelphia, Pennsylvania 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19092807" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Electric Conductivity ; Guanosine Triphosphate/metabolism ; Heterotrimeric GTP-Binding Proteins ; Hippocampus/cytology ; Humans ; Ion Channels/agonists/genetics/*metabolism ; Mice ; Molecular Sequence Data ; Nerve Tissue Proteins/agonists/genetics/*metabolism ; Neurons/metabolism ; Neurotensin/pharmacology ; Neurotransmitter Agents/*pharmacology ; Receptors, Neurokinin-1/metabolism ; Substance P/pharmacology ; Transfection ; Ventral Tegmental Area/cytology ; src-Family Kinases/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-01-24
    Description: We constructed a large-scale functional network model in Drosophila melanogaster built around two key transcription factors involved in the process of embryonic segmentation. Analysis of the model allowed the identification of a new role for the ubiquitin E3 ligase complex factor SPOP. In Drosophila, the gene encoding SPOP is a target of segmentation transcription factors. Drosophila SPOP mediates degradation of the Jun kinase phosphatase Puckered, thereby inducing tumor necrosis factor (TNF)/Eiger-dependent apoptosis. In humans, we found that SPOP plays a conserved role in TNF-mediated JNK signaling and was highly expressed in 99% of clear cell renal cell carcinomas (RCCs), the most prevalent form of kidney cancer. SPOP expression distinguished histological subtypes of RCC and facilitated identification of clear cell RCC as the primary tumor for metastatic lesions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2756524/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2756524/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Jiang -- Ghanim, Murad -- Xue, Lei -- Brown, Christopher D -- Iossifov, Ivan -- Angeletti, Cesar -- Hua, Sujun -- Negre, Nicolas -- Ludwig, Michael -- Stricker, Thomas -- Al-Ahmadie, Hikmat A -- Tretiakova, Maria -- Camp, Robert L -- Perera-Alberto, Montse -- Rimm, David L -- Xu, Tian -- Rzhetsky, Andrey -- White, Kevin P -- P50 GM081892/GM/NIGMS NIH HHS/ -- P50 GM081892-01A1/GM/NIGMS NIH HHS/ -- R01 HG003012/HG/NHGRI NIH HHS/ -- R01 HG003012-04/HG/NHGRI NIH HHS/ -- UL1 RR024999/RR/NCRR NIH HHS/ -- UL1 RR024999-02/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2009 Feb 27;323(5918):1218-22. doi: 10.1126/science.1157669. Epub 2009 Jan 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Genomics and Systems Biology, University of Chicago and Argonne National Laboratory, Chicago, IL 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19164706" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Apoptosis ; Carcinoma, Renal Cell/*genetics/metabolism ; Cell Line ; Compound Eye, Arthropod/embryology/metabolism ; Drosophila Proteins/genetics/metabolism ; Drosophila melanogaster/embryology/*genetics/metabolism ; Embryo, Nonmammalian/metabolism ; Fushi Tarazu Transcription Factors/genetics/metabolism ; Gene Expression Profiling ; Gene Regulatory Networks ; Homeodomain Proteins/genetics/metabolism ; Humans ; Janus Kinases/*metabolism ; Kidney/metabolism ; Kidney Neoplasms/*genetics/metabolism ; Molecular Sequence Data ; Nervous System/embryology ; Nuclear Proteins/*genetics/metabolism ; Phosphoprotein Phosphatases/metabolism ; Phosphorylation ; Repressor Proteins/*genetics/metabolism ; *Signal Transduction ; Transcription Factors/genetics/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-07-23
    Description: A newly emerged H7N9 virus has caused 132 human infections with 37 deaths in China since 18 February 2013. Control measures in H7N9 virus-positive live poultry markets have reduced the number of infections; however, the character of the virus, including its pandemic potential, remains largely unknown. We systematically analyzed H7N9 viruses isolated from birds and humans. The viruses were genetically closely related and bound to human airway receptors; some also maintained the ability to bind to avian airway receptors. The viruses isolated from birds were nonpathogenic in chickens, ducks, and mice; however, the viruses isolated from humans caused up to 30% body weight loss in mice. Most importantly, one virus isolated from humans was highly transmissible in ferrets by respiratory droplet. Our findings indicate nothing to reduce the concern that these viruses can transmit between humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Qianyi -- Shi, Jianzhong -- Deng, Guohua -- Guo, Jing -- Zeng, Xianying -- He, Xijun -- Kong, Huihui -- Gu, Chunyang -- Li, Xuyong -- Liu, Jinxiong -- Wang, Guojun -- Chen, Yan -- Liu, Liling -- Liang, Libin -- Li, Yuanyuan -- Fan, Jun -- Wang, Jinliang -- Li, Wenhui -- Guan, Lizheng -- Li, Qimeng -- Yang, Huanliang -- Chen, Pucheng -- Jiang, Li -- Guan, Yuntao -- Xin, Xiaoguang -- Jiang, Yongping -- Tian, Guobin -- Wang, Xiurong -- Qiao, Chuanling -- Li, Chengjun -- Bu, Zhigao -- Chen, Hualan -- New York, N.Y. -- Science. 2013 Jul 26;341(6144):410-4. doi: 10.1126/science.1240532. Epub 2013 Jul 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23868922" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chickens/virology ; Columbidae/virology ; Ducks/virology ; Ferrets/*virology ; Genes, Viral ; Hemagglutinin Glycoproteins, Influenza Virus/chemistry/genetics/metabolism ; Humans ; Influenza A virus/genetics/isolation & purification/*pathogenicity/physiology ; Influenza in Birds/virology ; Influenza, Human/*transmission/*virology ; Mice ; Mice, Inbred BALB C ; Molecular Sequence Data ; Mutation ; Orthomyxoviridae Infections/*transmission/*virology ; Receptors, Cell Surface/metabolism ; Receptors, Virus/metabolism ; Respiratory System/*virology ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-05-04
    Description: In the past, avian influenza viruses have crossed species barriers to trigger human pandemics by reassorting with mammal-infective viruses in intermediate livestock hosts. H5N1 viruses are able to infect pigs, and some of them have affinity for the mammalian type alpha-2,6-linked sialic acid airway receptor. Using reverse genetics, we systematically created 127 reassortant viruses between a duck isolate of H5N1, specifically retaining its hemagglutinin (HA) gene throughout, and a highly transmissible, human-infective H1N1 virus. We tested the virulence of the reassortants in mice as a correlate for virulence in humans and tested transmissibility in guinea pigs, which have both avian and mammalian types of airway receptor. Transmission studies showed that the H1N1 virus genes encoding acidic polymerase and nonstructural protein made the H5N1 virus transmissible by respiratory droplet between guinea pigs without killing them. Further experiments implicated other H1N1 genes in the enhancement of mammal-to-mammal transmission, including those that encode nucleoprotein, neuraminidase, and matrix, as well as mutations in H5 HA that improve affinity for humanlike airway receptors. Hence, avian H5N1 subtype viruses do have the potential to acquire mammalian transmissibility by reassortment in current agricultural scenarios.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Ying -- Zhang, Qianyi -- Kong, Huihui -- Jiang, Yongping -- Gao, Yuwei -- Deng, Guohua -- Shi, Jianzhong -- Tian, Guobin -- Liu, Liling -- Liu, Jinxiong -- Guan, Yuntao -- Bu, Zhigao -- Chen, Hualan -- New York, N.Y. -- Science. 2013 Jun 21;340(6139):1459-63. doi: 10.1126/science.1229455. Epub 2013 May 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23641061" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Brain/virology ; Cell Line ; Ferrets ; Genes, Viral ; Guinea Pigs ; Hemagglutinin Glycoproteins, Influenza Virus/chemistry/genetics ; Humans ; Influenza A Virus, H1N1 Subtype/*genetics/pathogenicity ; Influenza A Virus, H5N1 Subtype/*genetics/pathogenicity ; Influenza, Human/transmission/virology ; Mice ; Mice, Inbred BALB C ; Molecular Sequence Data ; Mutation ; Orthomyxoviridae Infections/*transmission/*virology ; Reassortant Viruses/*genetics/*pathogenicity ; Receptors, Cell Surface/metabolism ; Receptors, Virus/metabolism ; Respiratory System/*virology ; Reverse Genetics ; Ribonucleoproteins/metabolism ; Viral Proteins/genetics/metabolism ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2004-07-31
    Description: Gene silencing through RNA interference (RNAi) is carried out by RISC, the RNA-induced silencing complex. RISC contains two signature components, small interfering RNAs (siRNAs) and Argonaute family proteins. Here, we show that the multiple Argonaute proteins present in mammals are both biologically and biochemically distinct, with a single mammalian family member, Argonaute2, being responsible for messenger RNA cleavage activity. This protein is essential for mouse development, and cells lacking Argonaute2 are unable to mount an experimental response to siRNAs. Mutations within a cryptic ribonuclease H domain within Argonaute2, as identified by comparison with the structure of an archeal Argonaute protein, inactivate RISC. Thus, our evidence supports a model in which Argonaute contributes "Slicer" activity to RISC, providing the catalytic engine for RNAi.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Jidong -- Carmell, Michelle A -- Rivas, Fabiola V -- Marsden, Carolyn G -- Thomson, J Michael -- Song, Ji-Joon -- Hammond, Scott M -- Joshua-Tor, Leemor -- Hannon, Gregory J -- New York, N.Y. -- Science. 2004 Sep 3;305(5689):1437-41. Epub 2004 Jul 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, Watson School of Biological Sciences, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15284456" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Argonaute Proteins ; Catalysis ; Cell Line ; Cells, Cultured ; Central Nervous System/embryology ; Embryonic and Fetal Development ; Eukaryotic Initiation Factor-2 ; Gene Expression Profiling ; Gene Expression Regulation, Developmental ; Humans ; In Situ Hybridization ; Mice ; MicroRNAs/metabolism ; Molecular Sequence Data ; Mutagenesis, Insertional ; Oligonucleotide Array Sequence Analysis ; Peptide Initiation Factors/chemistry/*metabolism ; Point Mutation ; *RNA Interference ; RNA, Double-Stranded ; RNA, Messenger/*metabolism ; RNA, Small Interfering/metabolism ; RNA-Induced Silencing Complex/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2005-07-08
    Description: H5N1 avian influenza virus (AIV) has emerged as a pathogenic entity for a variety of species, including humans, in recent years. Here we report an outbreak among migratory birds on Lake Qinghaihu, China, in May and June 2005, in which more than a thousand birds were affected. Pancreatic necrosis and abnormal neurological symptoms were the major clinical features. Sequencing of the complete genomes of four H5N1 AIV strains revealed them to be reassortants related to a peregrine falcon isolate from Hong Kong and to have known highly pathogenic characteristics. Experimental animal infections reproduced typical highly pathogenic AIV infection symptoms and pathology.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, J -- Xiao, H -- Lei, F -- Zhu, Q -- Qin, K -- Zhang, X-W -- Zhang, X-L -- Zhao, D -- Wang, G -- Feng, Y -- Ma, J -- Liu, W -- Wang, J -- Gao, G F -- New York, N.Y. -- Science. 2005 Aug 19;309(5738):1206. Epub 2005 Jul 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉College of Veterinary Medicine, China Agricultural University, Beijing 100094, China. jhl@cau.edu.cn〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16000410" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animal Migration ; Animals ; Birds/virology ; Charadriiformes/*virology ; Chickens ; China/epidemiology ; Disease Outbreaks/*veterinary ; Geese/*virology ; Genome, Viral ; *Influenza A Virus, H5N1 Subtype ; Influenza A virus/classification/genetics/isolation & purification/*pathogenicity ; Influenza in Birds/*epidemiology/pathology/*virology ; Mice ; Molecular Sequence Data ; Phylogeny ; Reassortant Viruses/genetics/pathogenicity ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-08-14
    Description: NLRC4 is a cytosolic member of the NOD-like receptor family that is expressed in innate immune cells. It senses indirectly bacterial flagellin and type III secretion systems, and responds by assembling an inflammasome complex that promotes caspase-1 activation and pyroptosis. Here we use knock-in mice expressing NLRC4 with a carboxy-terminal 3xFlag tag to identify phosphorylation of NLRC4 on a single, evolutionarily conserved residue, Ser 533, following infection of macrophages with Salmonella enterica serovar Typhimurium (also known as Salmonella typhimurium). Western blotting with a NLRC4 phospho-Ser 533 antibody confirmed that this post-translational modification occurs only in the presence of stimuli known to engage NLRC4 and not the related protein NLRP3 or AIM2. Nlrc4(-/-) macrophages reconstituted with NLRC4 mutant S533A, unlike those reconstituted with wild-type NLRC4, did not activate caspase-1 and pyroptosis in response to S. typhimurium, indicating that S533 phosphorylation is critical for NLRC4 inflammasome function. Conversely, phosphomimetic NLRC4 S533D caused rapid macrophage pyroptosis without infection. Biochemical purification of the NLRC4-phosphorylating activity and a screen of kinase inhibitors identified PRKCD (PKCdelta) as a candidate NLRC4 kinase. Recombinant PKCdelta phosphorylated NLRC4 S533 in vitro, immunodepletion of PKCdelta from macrophage lysates blocked NLRC4 S533 phosphorylation in vitro, and Prkcd(-/-) macrophages exhibited greatly attenuated caspase-1 activation and IL-1beta secretion specifically in response to S. typhimurium. Phosphorylation-defective NLRC4 S533A failed to recruit procaspase-1 and did not assemble inflammasome specks during S. typhimurium infection, so phosphorylation of NLRC4 S533 probably drives conformational changes necessary for NLRC4 inflammasome activity and host innate immunity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Qu, Yan -- Misaghi, Shahram -- Izrael-Tomasevic, Anita -- Newton, Kim -- Gilmour, Laurie L -- Lamkanfi, Mohamed -- Louie, Salina -- Kayagaki, Nobuhiko -- Liu, Jinfeng -- Komuves, Laszlo -- Cupp, James E -- Arnott, David -- Monack, Denise -- Dixit, Vishva M -- England -- Nature. 2012 Oct 25;490(7421):539-42. doi: 10.1038/nature11429. Epub 2012 Aug 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiological Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22885697" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; CARD Signaling Adaptor Proteins/chemistry/deficiency/genetics/*metabolism ; Calcium-Binding Proteins/chemistry/deficiency/genetics/*metabolism ; Caspase 1/metabolism ; Enzyme Activation ; Gene Knock-In Techniques ; Humans ; Immunity, Innate/immunology ; Inflammasomes/*metabolism ; Interleukin-1beta/immunology/secretion ; Macrophages/immunology ; Mice ; Molecular Sequence Data ; Phosphorylation ; Protein Conformation ; Protein Kinase C-delta/deficiency/genetics/metabolism ; Salmonella typhimurium/immunology ; Sequence Alignment
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...