ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2000-01-05
    Description: Phytochromes are a family of photoreceptors used by green plants to entrain their development to the light environment. The distribution of these chromoproteins has been expanded beyond photoautotrophs with the discovery of phytochrome-like proteins in the nonphotosynthetic eubacteria Deinococcus radiodurans and Pseudomonas aeruginosa. Like plant phytochromes, the D. radiodurans receptor covalently binds linear tetrapyrroles autocatalytically to generate a photochromic holoprotein. However, the attachment site is distinct, using a histidine to potentially form a Schiff base linkage. Sequence homology and mutational analysis suggest that D. radiodurans bacteriophytochrome functions as a light-regulated histidine kinase, which helps protect the bacterium from visible light.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davis, S J -- Vener, A V -- Vierstra, R D -- New York, N.Y. -- Science. 1999 Dec 24;286(5449):2517-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Genetics, Cellular and Molecular Biology Program and Department of Horticulture, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10617469" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Bacterial Proteins/chemistry/genetics/*metabolism ; Biliverdine/analogs & derivatives/metabolism ; Binding Sites ; Gram-Positive Cocci/genetics/*metabolism ; Histidine/metabolism ; Light ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Photoreceptors, Microbial/chemistry/genetics/*metabolism ; Phytochrome/metabolism ; Protein Kinases/chemistry/genetics/*metabolism ; Pseudomonas aeruginosa/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1989-12-22
    Description: T cell clones obtained from a human volunteer immunized with Plasmodium falciparum sporozoites specifically recognized the native circumsporozoite (CS) antigen expressed on P. falciparum sporozoites, as well as bacteria- and yeast-derived recombinant falciparum CS proteins. The response of these CD4+ CD8- cells was species-specific, since the clones did not proliferate or secrete gamma interferon when challenged with sporozoites or recombinant CS proteins of other human, simian, or rodent malarias. The epitope recognized by the sporozoite-specific human T cell clones mapped to the 5' repeat region of the CS protein and was contained in the NANPNVDPNANP sequence.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nardin, E H -- Herrington, D A -- Davis, J -- Levine, M -- Stuber, D -- Takacs, B -- Caspers, P -- Barr, P -- Altszuler, R -- Clavijo, P -- AI25085/AI/NIAID NIH HHS/ -- AI62533/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1989 Dec 22;246(4937):1603-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical and Molecular Parasitology, New York University, NY 10010.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2480642" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigens, CD4/*immunology ; Antigens, Protozoan/*immunology ; Cells, Cultured ; Clone Cells ; Epitopes/*analysis ; Humans ; Interferon-gamma/biosynthesis ; Lymphocyte Activation ; Malaria/*immunology ; Molecular Sequence Data ; Plasmodium falciparum/*immunology ; *Protozoan Proteins ; Recombinant Proteins/immunology ; T-Lymphocytes/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2007-09-01
    Description: Cell-cell contacts are fundamental to multicellular organisms and are subject to exquisite levels of control. Human RPTPmu is a type IIB receptor protein tyrosine phosphatase that both forms an adhesive contact itself and is involved in regulating adhesion by dephosphorylating components of cadherin-catenin complexes. Here we describe a 3.1 angstrom crystal structure of the RPTPmu ectodomain that forms a homophilic trans (antiparallel) dimer with an extended and rigid architecture, matching the dimensions of adherens junctions. Cell surface expression of deletion constructs induces intercellular spacings that correlate with the ectodomain length. These data suggest that the RPTPmu ectodomain acts as a distance gauge and plays a key regulatory function, locking the phosphatase to its appropriate functional location.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aricescu, A Radu -- Siebold, Christian -- Choudhuri, Kaushik -- Chang, Veronica T -- Lu, Weixian -- Davis, Simon J -- van der Merwe, P Anton -- Jones, E Yvonne -- 081894/Wellcome Trust/United Kingdom -- G9722488/Medical Research Council/United Kingdom -- G9900061/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2007 Aug 31;317(5842):1217-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Research UK Receptor Structure Research Group, University of Oxford, Henry Wellcome Building of Genomic Medicine, Division of Structural Biology, Roosevelt Drive, Oxford OX3 7BN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17761881" target="_blank"〉PubMed〈/a〉
    Keywords: Adherens Junctions/chemistry/*physiology/ultrastructure ; Amino Acid Sequence ; Cell Adhesion ; Cell Adhesion Molecules/*chemistry/metabolism ; Cell Membrane/chemistry/enzymology ; Conserved Sequence ; Dimerization ; Fibronectins/chemistry ; Humans ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Hydrophobic and Hydrophilic Interactions ; Immunoglobulins/chemistry ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Protein Structure, Tertiary ; Protein Tyrosine Phosphatases/*chemistry/genetics/*metabolism ; Receptor-Like Protein Tyrosine Phosphatases, Class 2
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1997-08-01
    Description: The c-Jun amino-terminal kinase (JNK) is a member of the stress-activated group of mitogen-activated protein (MAP) kinases that are implicated in the control of cell growth. A murine cytoplasmic protein that binds specifically to JNK [the JNK interacting protein-1 (JIP-1)] was characterized and cloned. JIP-1 caused cytoplasmic retention of JNK and inhibition of JNK-regulated gene expression. In addition, JIP-1 suppressed the effects of the JNK signaling pathway on cellular proliferation, including transformation by the Bcr-Abl oncogene. This analysis identifies JIP-1 as a specific inhibitor of the JNK signal transduction pathway and establishes protein targeting as a mechanism that regulates signaling by stress-activated MAP kinases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dickens, M -- Rogers, J S -- Cavanagh, J -- Raitano, A -- Xia, Z -- Halpern, J R -- Greenberg, M E -- Sawyers, C L -- Davis, R J -- CA43855/CA/NCI NIH HHS/ -- CA65861/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1997 Aug 1;277(5326):693-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9235893" target="_blank"〉PubMed〈/a〉
    Keywords: Activating Transcription Factor 2 ; Animals ; COS Cells ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Carrier Proteins/chemistry/*metabolism ; Cell Nucleus/metabolism ; Cell Transformation, Neoplastic ; Cells, Cultured ; Cloning, Molecular ; Cyclic AMP Response Element-Binding Protein/metabolism ; Cytoplasm/metabolism ; Fusion Proteins, bcr-abl/metabolism ; Gene Expression Regulation ; JNK Mitogen-Activated Protein Kinases ; Mitogen-Activated Protein Kinase 9 ; *Mitogen-Activated Protein Kinases ; Molecular Sequence Data ; Phosphorylation ; Protein Kinases/metabolism ; Proto-Oncogene Proteins c-jun/metabolism ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; Transcription Factors/metabolism ; Transcriptional Activation ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1998-09-11
    Description: The c-Jun NH2-terminal kinase (JNK) group of mitogen-activated protein (MAP) kinases is activated by the exposure of cells to multiple forms of stress. A putative scaffold protein was identified that interacts with multiple components of the JNK signaling pathway, including the mixed-lineage group of MAP kinase kinase kinases (MLK), the MAP kinase kinase MKK7, and the MAP kinase JNK. This scaffold protein selectively enhanced JNK activation by the MLK signaling pathway. These data establish that a mammalian scaffold protein can mediate activation of a MAP kinase signaling pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Whitmarsh, A J -- Cavanagh, J -- Tournier, C -- Yasuda, J -- Davis, R J -- New York, N.Y. -- Science. 1998 Sep 11;281(5383):1671-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School and Howard Hughes Medical Institute, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9733513" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; COS Cells ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Carrier Proteins/*metabolism ; Cell Line ; Cercopithecus aethiops ; Enzyme Activation ; Interleukin-1/metabolism ; JNK Mitogen-Activated Protein Kinases ; MAP Kinase Kinase 7 ; *MAP Kinase Kinase Kinases ; *Mitogen-Activated Protein Kinase Kinases ; *Mitogen-Activated Protein Kinases ; Molecular Sequence Data ; Protein Kinases/*metabolism ; Protein-Serine-Threonine Kinases/*metabolism ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1996-06-21
    Description: ZPR1 is a zinc finger protein that binds to the cytoplasmic tyrosine kinase domain of the epidermal growth factor receptor (EGFR). Deletion analysis demonstrated that this binding interaction is mediated by the zinc fingers of ZPR1 and subdomains X and XI of the EGFR tyrosine kinase. Treatment of mammalian cells with EGF caused decreased binding of ZPR1 to the EGFR and the accumulation of ZPR1 in the nucleus. The effect of EGF to regulate ZPR1 binding is dependent on tyrosine phosphorylation of the EGFR. ZPR1 therefore represents a prototype for a class of molecule that binds to the EGFR and is released from the receptor after activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Galcheva-Gargova, Z -- Konstantinov, K N -- Wu, I H -- Klier, F G -- Barrett, T -- Davis, R J -- R01-CA58396/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1996 Jun 21;272(5269):1797-802.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8650580" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Carrier Proteins/chemistry/*metabolism/secretion ; Cell Line ; Cell Nucleus/metabolism ; Cloning, Molecular ; Cytoplasm/metabolism ; Epidermal Growth Factor/pharmacology ; Humans ; Immunoblotting ; Male ; Mice ; Molecular Sequence Data ; Phosphorylation ; Phosphotyrosine/metabolism ; Protein Structure, Secondary ; RNA, Messenger/genetics/metabolism ; Receptor, Epidermal Growth Factor/chemistry/*metabolism ; Testis/metabolism ; Type C Phospholipases/metabolism ; Vanadates/pharmacology ; *Zinc Fingers ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1995-02-03
    Description: Mammalian mitogen-activated protein (MAP) kinases include extracellular signal-regulated protein kinase (ERK), c-Jun amino-terminal kinase (JNK), and p38 subgroups. These MAP kinase isoforms are activated by dual phosphorylation on threonine and tyrosine. Two human MAP kinase kinases (MKK3 and MKK4) were cloned that phosphorylate and activate p38 MAP kinase. These MKK isoforms did not activate the ERK subgroup of MAP kinases, but MKK4 did activate JNK. These data demonstrate that the activators of p38 (MKK3 and MKK4), JNK (MKK4), and ERK (MEK1 and MEK2) define independent MAP kinase signal transduction pathways.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Derijard, B -- Raingeaud, J -- Barrett, T -- Wu, I H -- Han, J -- Ulevitch, R J -- Davis, R J -- AI15136/AI/NIAID NIH HHS/ -- CA58396/CA/NCI NIH HHS/ -- GM37696/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1995 Feb 3;267(5198):682-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester 01605.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7839144" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Cell Line ; Cloning, Molecular ; Enzyme Activation ; Humans ; JNK Mitogen-Activated Protein Kinases ; MAP Kinase Kinase 3 ; *MAP Kinase Kinase 4 ; Mitogen-Activated Protein Kinase 1 ; *Mitogen-Activated Protein Kinase Kinases ; *Mitogen-Activated Protein Kinases ; Molecular Sequence Data ; Phosphorylation ; Protein-Serine-Threonine Kinases/chemistry/*metabolism ; Protein-Tyrosine Kinases/chemistry/*metabolism ; *Signal Transduction ; Substrate Specificity ; Transfection ; p38 Mitogen-Activated Protein Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1995-01-20
    Description: Treatment of cells with pro-inflammatory cytokines or ultraviolet radiation causes activation of the c-Jun NH2-terminal protein kinase (JNK). Activating transcription factor-2 (ATF2) was found to be a target of the JNK signal transduction pathway. ATF2 was phosphorylated by JNK on two closely spaced threonine residues within the NH2-terminal activation domain. The replacement of these phosphorylation sites with alanine inhibited the transcriptional activity of ATF2. These mutations also inhibited ATF2-stimulated gene expression mediated by the retinoblastoma (Rb) tumor suppressor and the adenovirus early region 1A (E1A) oncoprotein. Furthermore, expression of dominant-negative JNK inhibited ATF2 transcriptional activity. Together, these data demonstrate a role for the JNK signal transduction pathway in transcriptional responses mediated by ATF2.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gupta, S -- Campbell, D -- Derijard, B -- Davis, R J -- New York, N.Y. -- Science. 1995 Jan 20;267(5196):389-93.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester 01605.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7824938" target="_blank"〉PubMed〈/a〉
    Keywords: Activating Transcription Factor 2 ; Adenovirus E1A Proteins/physiology ; Animals ; Base Sequence ; CHO Cells ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Cricetinae ; Cyclic AMP Response Element-Binding Protein/chemistry/genetics/*metabolism ; DNA/metabolism ; Interleukin-1/pharmacology ; JNK Mitogen-Activated Protein Kinases ; *Leucine Zippers ; *Mitogen-Activated Protein Kinases ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Phosphorylation ; Point Mutation ; Promoter Regions, Genetic ; Retinoblastoma Protein/physiology ; *Signal Transduction ; *Transcription Factors ; *Transcription, Genetic ; Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1993-05-14
    Description: The CD4 antigen is a membrane glycoprotein of T lymphocytes that interacts with major histocompatibility complex class II antigens and is also a receptor for the human immunodeficiency virus. the extracellular portion of CD4 is predicted to fold into four immunoglobulin-like domains. The crystal structure of the third and fourth domains of rat CD4 was solved at 2.8 angstrom resolution and shows that both domains have immunoglobulin folds. Domain 3, however, lacks the disulfide between the beta sheets; this results in an expansion of the domain. There is a difference of 30 degrees in the orientation between domains 3 and 4 when compared with domains 1 and 2. The two CD4 fragment structures provide a basis from which models of the overall receptor can be proposed. These models suggest an extended structure comprising two rigid portions joined by a short and possibly flexible linker region.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brady, R L -- Dodson, E J -- Dodson, G G -- Lange, G -- Davis, S J -- Williams, A F -- Barclay, A N -- New York, N.Y. -- Science. 1993 May 14;260(5110):979-83.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of York, United Kingdom.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8493535" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigens, CD4/*chemistry ; Crystallization ; Humans ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Rats ; Sequence Alignment ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-08-05
    Description: The osmotic balance between the cytoplasmic and extracellular compartments of cells is critical for the control of cell volume. A mammalian protein kinase, Jnk, which is a distant relative of the mitogen-activated protein kinase group, was activated by phosphorylation on threonine and tyrosine in osmotically shocked cells. The activation of Jnk may be relevant to the biological response to osmotic shock because the expression of human Jnk in the yeast Saccharomyces cerevisiae rescued a defect in growth on hyper-osmolar media. These data indicate that related protein kinases may mediate osmosensing signal transduction in yeast and mammalian cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Galcheva-Gargova, Z -- Derijard, B -- Wu, I H -- Davis, R J -- New York, N.Y. -- Science. 1994 Aug 5;265(5173):806-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester 01605.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8047888" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; CHO Cells ; Calcium-Calmodulin-Dependent Protein Kinases/genetics ; Cricetinae ; Cricetulus ; Enzyme Activation ; Genetic Complementation Test ; JNK Mitogen-Activated Protein Kinases ; *Mitogen-Activated Protein Kinases ; Molecular Sequence Data ; Osmotic Pressure ; Protein-Serine-Threonine Kinases/*physiology ; Saccharomyces cerevisiae/genetics ; *Saccharomyces cerevisiae Proteins ; Sequence Homology, Amino Acid ; Signal Transduction/*physiology ; Water-Electrolyte Balance/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...