ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-12-25
    Description: Sequencing of bacterial and archaeal genomes has revolutionized our understanding of the many roles played by microorganisms. There are now nearly 1,000 completed bacterial and archaeal genomes available, most of which were chosen for sequencing on the basis of their physiology. As a result, the perspective provided by the currently available genomes is limited by a highly biased phylogenetic distribution. To explore the value added by choosing microbial genomes for sequencing on the basis of their evolutionary relationships, we have sequenced and analysed the genomes of 56 culturable species of Bacteria and Archaea selected to maximize phylogenetic coverage. Analysis of these genomes demonstrated pronounced benefits (compared to an equivalent set of genomes randomly selected from the existing database) in diverse areas including the reconstruction of phylogenetic history, the discovery of new protein families and biological properties, and the prediction of functions for known genes from other organisms. Our results strongly support the need for systematic 'phylogenomic' efforts to compile a phylogeny-driven 'Genomic Encyclopedia of Bacteria and Archaea' in order to derive maximum knowledge from existing microbial genome data as well as from genome sequences to come.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3073058/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3073058/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Dongying -- Hugenholtz, Philip -- Mavromatis, Konstantinos -- Pukall, Rudiger -- Dalin, Eileen -- Ivanova, Natalia N -- Kunin, Victor -- Goodwin, Lynne -- Wu, Martin -- Tindall, Brian J -- Hooper, Sean D -- Pati, Amrita -- Lykidis, Athanasios -- Spring, Stefan -- Anderson, Iain J -- D'haeseleer, Patrik -- Zemla, Adam -- Singer, Mitchell -- Lapidus, Alla -- Nolan, Matt -- Copeland, Alex -- Han, Cliff -- Chen, Feng -- Cheng, Jan-Fang -- Lucas, Susan -- Kerfeld, Cheryl -- Lang, Elke -- Gronow, Sabine -- Chain, Patrick -- Bruce, David -- Rubin, Edward M -- Kyrpides, Nikos C -- Klenk, Hans-Peter -- Eisen, Jonathan A -- R01 GM054592-09/GM/NIGMS NIH HHS/ -- R01 GM067012-04/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Dec 24;462(7276):1056-60. doi: 10.1038/nature08656.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉DOE Joint Genome Institute, Walnut Creek, California 94598, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20033048" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/chemistry ; Amino Acid Sequence ; Archaea/*classification/*genetics ; Bacteria/*classification/*genetics ; Bacterial Proteins/chemistry ; Biodiversity ; Databases, Genetic ; Genes, rRNA/genetics ; Genome, Archaeal/*genetics ; Genome, Bacterial/*genetics ; Models, Molecular ; Molecular Sequence Data ; *Phylogeny ; Protein Structure, Tertiary ; Sequence Alignment
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006-11-18
    Description: Our knowledge of Neanderthals is based on a limited number of remains and artifacts from which we must make inferences about their biology, behavior, and relationship to ourselves. Here, we describe the characterization of these extinct hominids from a new perspective, based on the development of a Neanderthal metagenomic library and its high-throughput sequencing and analysis. Several lines of evidence indicate that the 65,250 base pairs of hominid sequence so far identified in the library are of Neanderthal origin, the strongest being the ascertainment of sequence identities between Neanderthal and chimpanzee at sites where the human genomic sequence is different. These results enabled us to calculate the human-Neanderthal divergence time based on multiple randomly distributed autosomal loci. Our analyses suggest that on average the Neanderthal genomic sequence we obtained and the reference human genome sequence share a most recent common ancestor approximately 706,000 years ago, and that the human and Neanderthal ancestral populations split approximately 370,000 years ago, before the emergence of anatomically modern humans. Our finding that the Neanderthal and human genomes are at least 99.5% identical led us to develop and successfully implement a targeted method for recovering specific ancient DNA sequences from metagenomic libraries. This initial analysis of the Neanderthal genome advances our understanding of the evolutionary relationship of Homo sapiens and Homo neanderthalensis and signifies the dawn of Neanderthal genomics.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2583069/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2583069/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Noonan, James P -- Coop, Graham -- Kudaravalli, Sridhar -- Smith, Doug -- Krause, Johannes -- Alessi, Joe -- Chen, Feng -- Platt, Darren -- Paabo, Svante -- Pritchard, Jonathan K -- Rubin, Edward M -- 1-F32-GM074367/GM/NIGMS NIH HHS/ -- HL066681/HL/NHLBI NIH HHS/ -- R01 HG002772/HG/NHGRI NIH HHS/ -- R01 HG002772-01/HG/NHGRI NIH HHS/ -- R01 HG002772-1/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2006 Nov 17;314(5802):1113-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉U.S. Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17110569" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Bone and Bones ; Cell Nucleus ; DNA/*genetics/isolation & purification ; DNA, Mitochondrial ; *Fossils ; Gene Pool ; Genome ; Genome, Human ; Genomic Library ; History, Ancient ; Hominidae/*genetics ; Humans ; Male ; Molecular Sequence Data ; Pan troglodytes/genetics ; Polymerase Chain Reaction ; Sequence Alignment ; *Sequence Analysis, DNA/methods ; Time
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1995-11-03
    Description: The BRCA1 gene product was identified as a 220-kilodalton nuclear phosphoprotein in normal cells, including breast ductal epithelial cells, and in 18 of 20 tumor cell lines derived from tissues other than breast and ovary. In 16 of 17 breast and ovarian cancer lines and 17 of 17 samples of cells obtained from malignant effusions, however, BRCA1 localized mainly in cytoplasm. Absence of BRCA1 or aberrant subcellular location was also observed to a variable extent in histological sections of many breast cancer biopsies. These findings suggest that BRCA1 abnormalities may be involved in the pathogenesis of many breast cancers, sporadic as well as familial.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Y -- Chen, C F -- Riley, D J -- Allred, D C -- Chen, P L -- Von Hoff, D -- Osborne, C K -- Lee, W H -- CA58318/CA/NCI NIH HHS/ -- EY05758/EY/NEI NIH HHS/ -- P50CA58183/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1995 Nov 3;270(5237):789-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center at San Antonio 78245, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7481765" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; BRCA1 Protein ; Base Sequence ; Breast/*chemistry ; Breast Neoplasms/*chemistry/ultrastructure ; Cell Fractionation ; Cell Line ; Cell Nucleus/chemistry ; Cytoplasm/*chemistry ; Female ; Humans ; Male ; Molecular Sequence Data ; Mutation ; Neoplasm Proteins/*analysis/genetics/metabolism ; Neoplasms/chemistry/ultrastructure ; Ovarian Neoplasms/chemistry/ultrastructure ; Pleural Effusion, Malignant/chemistry/pathology ; Transcription Factors/*analysis/genetics/metabolism ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2007-09-29
    Description: The genome of the eukaryotic protist Giardia lamblia, an important human intestinal parasite, is compact in structure and content, contains few introns or mitochondrial relics, and has simplified machinery for DNA replication, transcription, RNA processing, and most metabolic pathways. Protein kinases comprise the single largest protein class and reflect Giardia's requirement for a complex signal transduction network for coordinating differentiation. Lateral gene transfer from bacterial and archaeal donors has shaped Giardia's genome, and previously unknown gene families, for example, cysteine-rich structural proteins, have been discovered. Unexpectedly, the genome shows little evidence of heterozygosity, supporting recent speculations that this organism is sexual. This genome sequence will not only be valuable for investigating the evolution of eukaryotes, but will also be applied to the search for new therapeutics for this parasite.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Morrison, Hilary G -- McArthur, Andrew G -- Gillin, Frances D -- Aley, Stephen B -- Adam, Rodney D -- Olsen, Gary J -- Best, Aaron A -- Cande, W Zacheus -- Chen, Feng -- Cipriano, Michael J -- Davids, Barbara J -- Dawson, Scott C -- Elmendorf, Heidi G -- Hehl, Adrian B -- Holder, Michael E -- Huse, Susan M -- Kim, Ulandt U -- Lasek-Nesselquist, Erica -- Manning, Gerard -- Nigam, Anuranjini -- Nixon, Julie E J -- Palm, Daniel -- Passamaneck, Nora E -- Prabhu, Anjali -- Reich, Claudia I -- Reiner, David S -- Samuelson, John -- Svard, Staffan G -- Sogin, Mitchell L -- AI42488/AI/NIAID NIH HHS/ -- AI43273/AI/NIAID NIH HHS/ -- AI51687/AI/NIAID NIH HHS/ -- R01 AI043273/AI/NIAID NIH HHS/ -- R01 AI048082/AI/NIAID NIH HHS/ -- R01 HG004164/HG/NHGRI NIH HHS/ -- R01 HG004164-01/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2007 Sep 28;317(5846):1921-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Marine Biological Laboratory, Woods Hole, MA 02543-1015, USA. morrison@mbl.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17901334" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Biological Evolution ; DNA Replication/genetics ; *Eukaryotic Cells ; Gene Transfer, Horizontal ; Genes, Protozoan ; *Genome, Protozoan ; Genomics ; Giardia lamblia/classification/*genetics/physiology ; Metabolic Networks and Pathways/genetics ; Molecular Sequence Data ; Phylogeny ; Protein Kinases/genetics/metabolism ; Protozoan Proteins/chemistry/genetics/metabolism ; RNA Processing, Post-Transcriptional ; Signal Transduction ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-01-29
    Description: The paucity of enzymes that efficiently deconstruct plant polysaccharides represents a major bottleneck for industrial-scale conversion of cellulosic biomass into biofuels. Cow rumen microbes specialize in degradation of cellulosic plant material, but most members of this complex community resist cultivation. To characterize biomass-degrading genes and genomes, we sequenced and analyzed 268 gigabases of metagenomic DNA from microbes adherent to plant fiber incubated in cow rumen. From these data, we identified 27,755 putative carbohydrate-active genes and expressed 90 candidate proteins, of which 57% were enzymatically active against cellulosic substrates. We also assembled 15 uncultured microbial genomes, which were validated by complementary methods including single-cell genome sequencing. These data sets provide a substantially expanded catalog of genes and genomes participating in the deconstruction of cellulosic biomass.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hess, Matthias -- Sczyrba, Alexander -- Egan, Rob -- Kim, Tae-Wan -- Chokhawala, Harshal -- Schroth, Gary -- Luo, Shujun -- Clark, Douglas S -- Chen, Feng -- Zhang, Tao -- Mackie, Roderick I -- Pennacchio, Len A -- Tringe, Susannah G -- Visel, Axel -- Woyke, Tanja -- Wang, Zhong -- Rubin, Edward M -- New York, N.Y. -- Science. 2011 Jan 28;331(6016):463-7. doi: 10.1126/science.1200387.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21273488" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Bacteria/enzymology/*genetics/isolation & purification/metabolism ; Bacterial Proteins/chemistry/genetics/metabolism ; *Biomass ; Carbohydrate Metabolism ; Cattle/*microbiology ; Cellulase/genetics/metabolism ; Cellulases/chemistry/*genetics/metabolism ; Cellulose/*metabolism ; Cellulose 1,4-beta-Cellobiosidase/genetics/metabolism ; Genes, Bacterial ; Genome, Bacterial ; *Metagenome ; Metagenomics/methods ; Molecular Sequence Annotation ; Molecular Sequence Data ; Poaceae/microbiology ; Rumen/metabolism/*microbiology ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...