ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Sequence Data  (9)
  • American Association for the Advancement of Science (AAAS)  (9)
  • National Academy of Sciences
Collection
Publisher
  • 1
    Publication Date: 2002-05-11
    Description: The majority (〉99%) of microorganisms from the environment resist cultivation in the laboratory. Ribosomal RNA analysis suggests that uncultivated organisms are found in nearly every prokaryotic group, and several divisions have no known cultivable representatives. We designed a diffusion chamber that allowed the growth of previously uncultivated microorganisms in a simulated natural environment. Colonies of representative marine organisms were isolated in pure culture. These isolates did not grow on artificial media alone but formed colonies in the presence of other microorganisms. This observation may help explain the nature of microbial uncultivability.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaeberlein, T -- Lewis, K -- Epstein, S S -- New York, N.Y. -- Science. 2002 May 10;296(5570):1127-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biology Department, Northeastern University, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12004133" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteria/classification/cytology/*growth & development/*isolation & purification ; *Bacteriological Techniques ; Colony Count, Microbial ; Culture Media ; DNA, Bacterial/analysis/genetics ; DNA, Ribosomal/analysis/genetics ; Diffusion Chambers, Culture ; Geologic Sediments/*microbiology ; Molecular Sequence Data ; RNA, Ribosomal, 16S/genetics ; *Seawater ; Silicon Dioxide
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1991-12-02
    Description: Epidermolysis bullosa simplex (EBS) is characterized by skin blistering due to basal keratinocyte fragility. In one family studied, inheritance of EBS is linked to the gene encoding keratin 14, and a thymine to cytosine mutation in exon 6 of keratin 14 has introduced a proline in the middle of an alpha-helical region. In a second family, inheritance of EBS is linked to loci that map near the keratin 5 gene. These data indicate that abnormalities of either of the components of the keratin intermediate filament heterodipolymer can impair the mechanical stability of these epithelial cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bonifas, J M -- Rothman, A L -- Epstein, E H Jr -- R01-AR28069/AR/NIAMS NIH HHS/ -- R01-AR39953/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 1991 Nov 22;254(5035):1202-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Dermatology, San Francisco General Hospital, University of California 94110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1720261" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Chromosomes, Human, Pair 12 ; Chromosomes, Human, Pair 17 ; Epidermolysis Bullosa Simplex/*genetics ; Genes ; Genetic Linkage ; Humans ; Keratins/*genetics ; Molecular Sequence Data ; Oligonucleotides/chemistry ; Pedigree ; Polymerase Chain Reaction ; Polymorphism, Restriction Fragment Length
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-03-01
    Description: The challenge presented by myofibril assembly in striated muscle is to understand the molecular mechanisms by which its protein components are arranged at each level of organization. Recent advances in the genetics and cell biology of muscle development have shown that in vivo assembly of the myofilaments requires a complex array of structural and associated proteins and that organization of whole sarcomeres occurs initially at the cell membrane. These studies have been complemented by in vitro analyses of the renaturation, polymerization, and three-dimensional structure of the purified proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Epstein, H F -- Fischman, D A -- AR-32147/AR/NIAMS NIH HHS/ -- GM-33223/GM/NIGMS NIH HHS/ -- HL-42267/HL/NHLBI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1991 Mar 1;251(4997):1039-44.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, Baylor College of Medicine, Houston, TX 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1998120" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/physiology ; Amino Acid Sequence ; Animals ; Macromolecular Substances ; Molecular Sequence Data ; Morphogenesis ; Muscle Contraction ; *Muscle Development ; Muscle Proteins/*physiology ; Myofibrils/*physiology ; Myosins/physiology ; Polymers ; Sarcolemma/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-02-21
    Description: Stripe rust is a devastating fungal disease that afflicts wheat in many regions of the world. New races of Puccinia striiformis, the pathogen responsible for this disease, have overcome most of the known race-specific resistance genes. We report the map-based cloning of the gene Yr36 (WKS1), which confers resistance to a broad spectrum of stripe rust races at relatively high temperatures (25 degrees to 35 degrees C). This gene includes a kinase and a putative START lipid-binding domain. Five independent mutations and transgenic complementation confirmed that both domains are necessary to confer resistance. Yr36 is present in wild wheat but is absent in modern pasta and bread wheat varieties, and therefore it can now be used to improve resistance to stripe rust in a broad set of varieties.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4737487/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4737487/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fu, Daolin -- Uauy, Cristobal -- Distelfeld, Assaf -- Blechl, Ann -- Epstein, Lynn -- Chen, Xianming -- Sela, Hanan -- Fahima, Tzion -- Dubcovsky, Jorge -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Mar 6;323(5919):1357-60. doi: 10.1126/science.1166289. Epub 2009 Feb 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Sciences, University of California, Davis, CA 95616, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19228999" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Basidiomycota/*pathogenicity ; Cloning, Molecular ; Crosses, Genetic ; Down-Regulation ; *Genes, Plant ; Hot Temperature ; Immunity, Innate ; Molecular Sequence Data ; Phosphotransferases/chemistry/*genetics/metabolism ; Physical Chromosome Mapping ; *Plant Diseases/immunology/microbiology ; Plant Proteins/chemistry/genetics/metabolism ; Plants, Genetically Modified ; Triticum/*genetics/*microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2005-10-01
    Description: Severe acute respiratory syndrome (SARS) emerged in 2002 to 2003 in southern China. The origin of its etiological agent, the SARS coronavirus (SARS-CoV), remains elusive. Here we report that species of bats are a natural host of coronaviruses closely related to those responsible for the SARS outbreak. These viruses, termed SARS-like coronaviruses (SL-CoVs), display greater genetic variation than SARS-CoV isolated from humans or from civets. The human and civet isolates of SARS-CoV nestle phylogenetically within the spectrum of SL-CoVs, indicating that the virus responsible for the SARS outbreak was a member of this coronavirus group.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Wendong -- Shi, Zhengli -- Yu, Meng -- Ren, Wuze -- Smith, Craig -- Epstein, Jonathan H -- Wang, Hanzhong -- Crameri, Gary -- Hu, Zhihong -- Zhang, Huajun -- Zhang, Jianhong -- McEachern, Jennifer -- Field, Hume -- Daszak, Peter -- Eaton, Bryan T -- Zhang, Shuyi -- Wang, Lin-Fa -- R01-TW05869/TW/FIC NIH HHS/ -- New York, N.Y. -- Science. 2005 Oct 28;310(5748):676-9. Epub 2005 Sep 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16195424" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cercopithecus aethiops ; China/epidemiology ; Chiroptera/*virology ; Communicable Diseases, Emerging ; *Coronavirus/classification ; Disease Outbreaks ; *Disease Reservoirs ; Genetic Variation ; Genome, Viral ; Henipavirus/classification ; Humans ; Molecular Sequence Data ; Mutation ; Phylogeny ; Polymerase Chain Reaction ; *SARS Virus/classification ; Sequence Analysis, DNA ; Severe Acute Respiratory Syndrome/epidemiology/transmission/virology ; Vero Cells ; Viverridae/virology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2002-01-26
    Description: The organization of myosin into motile cellular structures requires precise temporal and spatial regulation. Proteins containing a UCS (UNC-45/CRO1/She4p) domain are necessary for the incorporation of myosin into the contractile ring during cytokinesis and into thick filaments during muscle development. We report that the carboxyl-terminal regions of UNC-45 bound and exerted chaperone activity on the myosin head. The amino-terminal tetratricopeptide repeat domain of UNC-45 bound the molecular chaperone Hsp90. Thus, UNC-45 functions both as a molecular chaperone and as an Hsp90 co-chaperone for myosin, which can explain previous findings of altered assembly and decreased accumulation of myosin in UNC-45 mutants of Caenorhabditis elegans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barral, Jose M -- Hutagalung, Alex H -- Brinker, Achim -- Hartl, F Ulrich -- Epstein, Henry F -- New York, N.Y. -- Science. 2002 Jan 25;295(5555):669-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11809970" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Binding Sites ; Caenorhabditis elegans/genetics/*metabolism ; Caenorhabditis elegans Proteins/chemistry/genetics/*metabolism ; Cell Line ; Cloning, Molecular ; HSP70 Heat-Shock Proteins/genetics/metabolism ; HSP90 Heat-Shock Proteins/genetics/metabolism ; Molecular Chaperones/chemistry/genetics/*metabolism ; Molecular Sequence Data ; Myosins/*metabolism ; Peptide Fragments/metabolism ; Protein Binding ; Protein Structure, Tertiary ; Recombinant Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1996-06-14
    Description: The basal cell nevus syndrome (BCNS) is characterized by developmental abnormalities and by the postnatal occurrence of cancers, especially basal cell carcinomas (BCCs), the most common human cancer. Heritable mutations in BCNS patients and a somatic mutation in a sporadic BCC were identified in a human homolog of the Drosophila patched (ptc) gene. The ptc gene encodes a transmembrane protein that in Drosophila acts in opposition to the Hedgehog signaling protein, controlling cell fates, patterning, and growth in numerous tissues. The human PTC gene appears to be crucial for proper embryonic development and for tumor suppression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Johnson, R L -- Rothman, A L -- Xie, J -- Goodrich, L V -- Bare, J W -- Bonifas, J M -- Quinn, A G -- Myers, R M -- Cox, D R -- Epstein, E H Jr -- Scott, M P -- AR3995/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Jun 14;272(5268):1668-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, California 94305-5427, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8658145" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Amino Acid Sequence ; Animals ; Basal Cell Nevus Syndrome/*genetics ; Base Sequence ; Cloning, Molecular ; DNA, Neoplasm ; Drosophila ; *Drosophila Proteins ; Female ; Frameshift Mutation ; *Genes, Tumor Suppressor ; Humans ; Insect Hormones/genetics ; Male ; Membrane Proteins/*genetics ; Middle Aged ; Molecular Sequence Data ; Polymerase Chain Reaction ; Polymorphism, Single-Stranded Conformational ; Protein Conformation ; Receptors, Cell Surface
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1994-07-15
    Description: A subset of patients who have undergone coronary angioplasty develop restenosis, a vessel renarrowing characterized by excessive proliferation of smooth muscle cells (SMCs). Of 60 human restenosis lesions examined, 23 (38 percent) were found to have accumulated high amounts of the tumor suppressor protein p53, and this correlated with the presence of human cytomegalovirus (HCMV) in the lesions. SMCs grown from the lesions expressed HCMV protein IE84 and high amounts of p53. HCMV infection of cultured SMCs enhanced p53 accumulation, which correlated temporally with IE84 expression. IE84 also bound to p53 and abolished its ability to transcriptionally activate a reporter gene. Thus, HCMV, and IE84-mediated inhibition of p53 function, may contribute to the development of restenosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Speir, E -- Modali, R -- Huang, E S -- Leon, M B -- Shawl, F -- Finkel, T -- Epstein, S E -- New York, N.Y. -- Science. 1994 Jul 15;265(5170):391-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cardiology Branch, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8023160" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Aged ; Aged, 80 and over ; *Angioplasty, Balloon ; Antigens, Viral/*metabolism ; Atherectomy, Coronary ; Base Sequence ; Cells, Cultured ; Coronary Disease/*etiology/pathology/therapy ; Coronary Vessels/cytology/metabolism/microbiology ; Cytomegalovirus/*physiology ; Genes, p53 ; Humans ; Immediate-Early Proteins/*metabolism ; Middle Aged ; Molecular Sequence Data ; Muscle, Smooth, Vascular/cytology/metabolism/microbiology ; Recurrence ; Transcriptional Activation ; Transfection ; Tumor Suppressor Protein p53/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-06-27
    Description: Cardiac progenitor cells are multipotent and give rise to cardiac endothelium, smooth muscle, and cardiomyocytes. Here, we define and characterize the cardiomyoblast intermediate that is committed to the cardiomyocyte fate, and we characterize the niche signals that regulate commitment. Cardiomyoblasts express Hopx, which functions to coordinate local Bmp signals to inhibit the Wnt pathway, thus promoting cardiomyogenesis. Hopx integrates Bmp and Wnt signaling by physically interacting with activated Smads and repressing Wnt genes. The identification of the committed cardiomyoblast that retains proliferative potential will inform cardiac regenerative therapeutics. In addition, Bmp signals characterize adult stem cell niches in other tissues where Hopx-mediated inhibition of Wnt is likely to contribute to stem cell quiescence and to explain the role of Hopx as a tumor suppressor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jain, Rajan -- Li, Deqiang -- Gupta, Mudit -- Manderfield, Lauren J -- Ifkovits, Jamie L -- Wang, Qiaohong -- Liu, Feiyan -- Liu, Ying -- Poleshko, Andrey -- Padmanabhan, Arun -- Raum, Jeffrey C -- Li, Li -- Morrisey, Edward E -- Lu, Min Min -- Won, Kyoung-Jae -- Epstein, Jonathan A -- 5-T32-GM-007170/GM/NIGMS NIH HHS/ -- K08 HL119553/HL/NHLBI NIH HHS/ -- K08 HL119553-02/HL/NHLBI NIH HHS/ -- R01 HL071546/HL/NHLBI NIH HHS/ -- U01 HL100405/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2015 Jun 26;348(6242):aaa6071. doi: 10.1126/science.aaa6071.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Developmental Biology, Penn Cardiovascular Institute, Institute of Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA. ; Department of Genetics, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA. ; Department of Cell and Developmental Biology, Penn Cardiovascular Institute, Institute of Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA. epsteinj@upenn.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26113728" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Bone Morphogenetic Proteins/genetics/*metabolism ; Cell Lineage/genetics ; Gene Expression ; *Gene Expression Regulation, Developmental ; Heart/*embryology ; Homeodomain Proteins/genetics/*metabolism ; Mice ; Mice, Mutant Strains ; Molecular Sequence Data ; Muscle, Smooth/cytology/metabolism ; Myoblasts, Cardiac/cytology/*metabolism ; Organogenesis/*genetics ; Stem Cell Niche/genetics/physiology ; Tumor Suppressor Proteins/genetics/*metabolism ; Wnt Signaling Pathway/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...