ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2001-01-06
    Description: All aspects of cellular RNA metabolism and the replication of many viruses require DExH/D proteins that manipulate RNA in a manner that requires nucleoside triphosphates. Although DExH/D proteins have been shown to unwind purified RNA duplexes, most RNA molecules in the cellular environment are complexed with proteins. It has therefore been speculated that DExH/D proteins may also affect RNA-protein interactions. We demonstrate that the DExH protein NPH-II from vaccinia virus can displace the protein U1A from RNA in an active adenosine triphosphate-dependent fashion. NPH-II increases the rate of U1A dissociation by more than three orders of magnitude while retaining helicase processivity. This indicates that DExH/D proteins can effectively catalyze protein displacement from RNA and thereby participate in the structural reorganization of ribonucleoprotein assemblies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jankowsky, E -- Gross, C H -- Shuman, S -- Pyle, A M -- New York, N.Y. -- Science. 2001 Jan 5;291(5501):121-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA. 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11141562" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions/metabolism ; Acid Anhydride Hydrolases/chemistry/*metabolism ; Adenosine Triphosphate/metabolism ; Base Sequence ; Binding Sites ; Kinetics ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Nucleoside-Triphosphatase ; Protein Binding ; Protein Conformation ; RNA/chemistry/*metabolism ; RNA Helicases/chemistry/*metabolism ; *RNA-Binding Proteins ; Ribonucleoprotein, U1 Small Nuclear/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-04-05
    Description: Group II introns are self-splicing ribozymes that catalyze their own excision from precursor transcripts and insertion into new genetic locations. Here we report the crystal structure of an intact, self-spliced group II intron from Oceanobacillus iheyensis at 3.1 angstrom resolution. An extensive network of tertiary interactions facilitates the ordered packing of intron subdomains around a ribozyme core that includes catalytic domain V. The bulge of domain V adopts an unusual helical structure that is located adjacent to a major groove triple helix (catalytic triplex). The bulge and catalytic triplex jointly coordinate two divalent metal ions in a configuration that is consistent with a two-metal ion mechanism for catalysis. Structural and functional analogies support the hypothesis that group II introns and the spliceosome share a common ancestor.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4406475/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4406475/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Toor, Navtej -- Keating, Kevin S -- Taylor, Sean D -- Pyle, Anna Marie -- GM50313/GM/NIGMS NIH HHS/ -- R01 GM050313/GM/NIGMS NIH HHS/ -- T15 LM07056/LM/NLM NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Apr 4;320(5872):77-82. doi: 10.1126/science.1153803.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, Bass Building, New Haven, CT 06511, USA. navtej.toor@yale.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18388288" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Bacillaceae/chemistry/*genetics ; Base Pairing ; Binding Sites ; Catalysis ; Catalytic Domain ; Crystallography, X-Ray ; Evolution, Molecular ; *Introns ; Ligands ; Magnesium/chemistry ; Models, Molecular ; Nucleic Acid Conformation ; Phylogeny ; *RNA Splicing ; RNA, Bacterial/*chemistry/metabolism ; RNA, Catalytic/*chemistry/metabolism ; Spliceosomes/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-03-08
    Description: Domain 5 is an essential active-site component of group II intron ribozymes. The role of backbone substituents in D5 function was explored through synthesis of a series of derivatives containing deoxynucleotides at each position along the D5 strand. Kinetic screens revealed that eight 2'-hydroxyl groups were likely to be critical for activity of D5. Through two separate methods, including competitive inhibition and direct kinetic analysis, effects on binding and chemistry were distinguished. Depending on their function, important 2'-hydroxyl groups lie on opposite faces of the molecule, defining distinct loci for molecular recognition and catalysis by D5.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Abramovitz, D L -- Friedman, R A -- Pyle, A M -- GM41371/GM/NIGMS NIH HHS/ -- GM50313/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Mar 8;271(5254):1410-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8596912" target="_blank"〉PubMed〈/a〉
    Keywords: Base Composition ; Base Sequence ; Binding Sites ; Catalysis ; Exons ; Hydrogen Bonding ; Hydroxyl Radical/chemistry ; *Introns ; Kinetics ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Oligoribonucleotides/chemistry/metabolism ; RNA/metabolism ; RNA, Catalytic/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2007-07-28
    Description: NS3, an essential helicase for replication of hepatitis C virus, is a model enzyme for investigating helicase function. Using single-molecule fluorescence analysis, we showed that NS3 unwinds DNA in discrete steps of about three base pairs (bp). Dwell time analysis indicated that about three hidden steps are required before a 3-bp step is taken. Taking into account the available structural data, we propose a spring-loaded mechanism in which several steps of one nucleotide per adenosine triphosphate molecule accumulate tension on the protein-DNA complex, which is relieved periodically via a burst of 3-bp unwinding. NS3 appears to shelter the displaced strand during unwinding, and, upon encountering a barrier or after unwinding 〉18 bp, it snaps or slips backward rapidly and repeats unwinding many times in succession. Such repetitive unwinding behavior over a short stretch of duplex may help to keep secondary structures resolved during viral genome replication.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3565428/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3565428/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Myong, Sua -- Bruno, Michael M -- Pyle, Anna M -- Ha, Taekjip -- R01 GM060620/GM/NIGMS NIH HHS/ -- R01 GM065367/GM/NIGMS NIH HHS/ -- R01-GM060620/GM/NIGMS NIH HHS/ -- R01-GM065367/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2007 Jul 27;317(5837):513-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Physics Department, University of Illinois, 1110 West Green Street, Urbana, IL 61801, USA. smyong@uiuc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17656723" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Base Pairing ; DNA/chemistry/*metabolism ; DNA Helicases/*metabolism ; Fluorescence Resonance Energy Transfer ; Hepacivirus/*enzymology ; Models, Biological ; Models, Molecular ; Nucleic Acid Conformation ; Temperature ; Viral Nonstructural Proteins/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...