ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-09-06
    Description: DNA methylation of CpG dinucleotides is an important epigenetic modification of mammalian genomes and is essential for the regulation of chromatin structure, of gene expression and of genome stability. Differences in DNA methylation patterns underlie a wide range of biological processes, such as genomic imprinting, inactivation of the X chromosome, embryogenesis, and carcinogenesis. Inheritance of the epigenetic methylation pattern is mediated by the enzyme DNA methyltransferase 1 (Dnmt1), which methylates newly synthesized CpG sequences during DNA replication, depending on the methylation status of the template strands. The protein UHRF1 (also known as Np95 and ICBP90) recognizes hemi-methylation sites via a SET and RING-associated (SRA) domain and directs Dnmt1 to these sites. Here we report the crystal structures of the SRA domain in free and hemi-methylated DNA-bound states. The SRA domain folds into a globular structure with a basic concave surface formed by highly conserved residues. Binding of DNA to the concave surface causes a loop and an amino-terminal tail of the SRA domain to fold into DNA interfaces at the major and minor grooves of the methylation site. In contrast to fully methylated CpG sites recognized by the methyl-CpG-binding domain, the methylcytosine base at the hemi-methylated site is flipped out of the DNA helix in the SRA-DNA complex and fits tightly into a protein pocket on the concave surface. The complex structure suggests that the successive flip out of the pre-existing methylated cytosine and the target cytosine to be methylated is associated with the coordinated transfer of the hemi-methylated CpG site from UHRF1 to Dnmt1.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arita, Kyohei -- Ariyoshi, Mariko -- Tochio, Hidehito -- Nakamura, Yusuke -- Shirakawa, Masahiro -- England -- Nature. 2008 Oct 9;455(7214):818-21. doi: 10.1038/nature07249. Epub 2008 Sep 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18772891" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Methylcytosine/metabolism ; Animals ; Base Sequence ; Conserved Sequence ; CpG Islands/genetics ; Crystallography, X-Ray ; DNA/*chemistry/genetics/*metabolism ; DNA (Cytosine-5-)-Methyltransferase/metabolism ; *DNA Methylation ; Mice ; Models, Biological ; Models, Molecular ; Molecular Conformation ; Nuclear Proteins/*chemistry/*metabolism ; Protein Binding ; Protein Structure, Tertiary
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1995-12-01
    Description: The structure of the carboxyl-terminal domain of the Escherichia coli RNA polymerase alpha subunit (alpha CTD), which is regarded as the contact site for transcription activator proteins and for the promoter UP element, was determined by nuclear magnetic resonance spectroscopy. Its compact structure of four helices and two long arms enclosing its hydrophobic core shows a folding topology distinct from those of other DNA-binding proteins. The UP element binding site was found on the surface comprising helix 1, the amino-terminal end of helix 4, and the preceding loop. Mutation experiments indicated that the contact sites for transcription activator proteins are also on the same surface.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jeon, Y H -- Negishi, T -- Shirakawa, M -- Yamazaki, T -- Fujita, N -- Ishihama, A -- Kyogoku, Y -- New York, N.Y. -- Science. 1995 Dec 1;270(5241):1495-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Protein Research, Osaka University, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7491496" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; DNA/metabolism ; DNA-Directed RNA Polymerases/*chemistry/genetics/metabolism ; Escherichia coli/enzymology ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Promoter Regions, Genetic ; Protein Folding ; Protein Structure, Secondary ; Solutions ; Trans-Activators/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...