ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochemical Systematics and Ecology 16 (1988), S. 467-469 
    ISSN: 0305-1978
    Keywords: Asteraceae ; Heliantheae ; Layia ; Madiinae ; chemotaxonomy ; flavonoid aglycones ; glandular flavonoids ; scopoletin
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Phytochemistry 31 (1992), S. 1261-1263 
    ISSN: 0031-9422
    Keywords: Asteraceae ; Calycadenia ; Heliantheae ; Lagophylla ; Madia ; Madiinae ; O-methylated flavonoids ; Osmadenia ; dihydroflavonols ; flavanones ; flavones ; flavonoids ; flavonols ; tarweeds
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Phytochemistry 29 (1990), S. 1175-1177 
    ISSN: 0031-9422
    Keywords: Argyroxiphium ; Asteraceae ; Heliantheae ; Madiinae ; O-methylated flavones. ; O-methylated flavonols ; Wilkesia ; flavonoids ; tarweeds
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochemical Systematics and Ecology 22 (1994), S. 859 
    ISSN: 0305-1978
    Keywords: Asteraceae ; Holocarpha ; Madiinae ; flavonoids ; tarweeds
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochemical Systematics and Ecology 14 (1986), S. 29-32 
    ISSN: 0305-1978
    Keywords: Calycadenia ciliosa ; Compositae ; Madiinae ; flavonoids ; interpopulational variation ; intrapopulational variation
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2000-08-26
    Description: Polyadenylate [poly(A)] polymerase (PAP) catalyzes the addition of a polyadenosine tail to almost all eukaryotic messenger RNAs (mRNAs). The crystal structure of the PAP from Saccharomyces cerevisiae (Pap1) has been solved to 2.6 angstroms, both alone and in complex with 3'-deoxyadenosine triphosphate (3'-dATP). Like other nucleic acid polymerases, Pap1 is composed of three domains that encircle the active site. The arrangement of these domains, however, is quite different from that seen in polymerases that use a template to select and position their incoming nucleotides. The first two domains are functionally analogous to polymerase palm and fingers domains. The third domain is attached to the fingers domain and is known to interact with the single-stranded RNA primer. In the nucleotide complex, two molecules of 3'-dATP are bound to Pap1. One occupies the position of the incoming base, prior to its addition to the mRNA chain. The other is believed to occupy the position of the 3' end of the mRNA primer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bard, J -- Zhelkovsky, A M -- Helmling, S -- Earnest, T N -- Moore, C L -- Bohm, A -- R01 GM57218-01A2/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Aug 25;289(5483):1346-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Boston Biomedical Research Institute, 64 Grove Street, Watertown, MA 02472, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10958780" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Catalytic Domain ; Crystallography, X-Ray ; Deoxyadenine Nucleotides/*chemistry/*metabolism ; Hydrogen Bonding ; Manganese/metabolism ; Models, Molecular ; Mutation ; Polynucleotide Adenylyltransferase/*chemistry/genetics/*metabolism ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA/metabolism ; RNA, Messenger/metabolism ; Ribosomal Protein S6 ; Ribosomal Proteins/chemistry/metabolism ; Saccharomyces cerevisiae/*enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1992-11-20
    Description: Macrophage colony-stimulating factor (M-CSF) triggers the development of cells of the monocyte-macrophage lineage and has a variety of stimulatory effects on mature cells of this class. The biologically active form of M-CSF is a disulfide-linked dimer that activates an intrinsic tyrosine kinase activity on the M-CSF receptor by inducing dimerization of the receptor molecules. The structure of a recombinant human M-CSF dimer, determined at 2.5 angstroms by x-ray crystallography, contains two bundles of four alpha helices laid end-to-end, with an interchain disulfide bond. Individual monomers of M-CSF show a close structural similarity to the cytokines granulocyte-macrophage colony-stimulating factor and human growth hormone. Both of these cytokines are monomeric in their active form, and their specific receptors lack intrinsic tyrosine kinase activity. The similarity of these structures suggests that the receptor binding determinants for all three cytokines may be similar.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pandit, J -- Bohm, A -- Jancarik, J -- Halenbeck, R -- Koths, K -- Kim, S H -- New York, N.Y. -- Science. 1992 Nov 20;258(5086):1358-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Biology Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1455231" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography ; Disulfides ; Granulocyte-Macrophage Colony-Stimulating Factor/ultrastructure ; Growth Hormone/chemistry ; Macrophage Colony-Stimulating Factor/*ultrastructure ; Models, Molecular ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Recombinant Proteins/ultrastructure ; Sequence Homology, Amino Acid ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-07-22
    Description: In the 1950s, the drug thalidomide, administered as a sedative to pregnant women, led to the birth of thousands of children with multiple defects. Despite the teratogenicity of thalidomide and its derivatives lenalidomide and pomalidomide, these immunomodulatory drugs (IMiDs) recently emerged as effective treatments for multiple myeloma and 5q-deletion-associated dysplasia. IMiDs target the E3 ubiquitin ligase CUL4-RBX1-DDB1-CRBN (known as CRL4(CRBN)) and promote the ubiquitination of the IKAROS family transcription factors IKZF1 and IKZF3 by CRL4(CRBN). Here we present crystal structures of the DDB1-CRBN complex bound to thalidomide, lenalidomide and pomalidomide. The structure establishes that CRBN is a substrate receptor within CRL4(CRBN) and enantioselectively binds IMiDs. Using an unbiased screen, we identified the homeobox transcription factor MEIS2 as an endogenous substrate of CRL4(CRBN). Our studies suggest that IMiDs block endogenous substrates (MEIS2) from binding to CRL4(CRBN) while the ligase complex is recruiting IKZF1 or IKZF3 for degradation. This dual activity implies that small molecules can modulate an E3 ubiquitin ligase and thereby upregulate or downregulate the ubiquitination of proteins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4423819/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4423819/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fischer, Eric S -- Bohm, Kerstin -- Lydeard, John R -- Yang, Haidi -- Stadler, Michael B -- Cavadini, Simone -- Nagel, Jane -- Serluca, Fabrizio -- Acker, Vincent -- Lingaraju, Gondichatnahalli M -- Tichkule, Ritesh B -- Schebesta, Michael -- Forrester, William C -- Schirle, Markus -- Hassiepen, Ulrich -- Ottl, Johannes -- Hild, Marc -- Beckwith, Rohan E J -- Harper, J Wade -- Jenkins, Jeremy L -- Thoma, Nicolas H -- AG011085/AG/NIA NIH HHS/ -- R01 AG011085/AG/NIA NIH HHS/ -- England -- Nature. 2014 Aug 7;512(7512):49-53. doi: 10.1038/nature13527. Epub 2014 Jul 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland [2] University of Basel, Petersplatz 10, CH-4003 Basel, Switzerland. ; Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA. ; Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA. ; 1] Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland [2] University of Basel, Petersplatz 10, CH-4003 Basel, Switzerland [3] Swiss Institute of Bioinformatics, Maulbeerstrasse 66, CH-4058 Basel, Switzerland. ; Novartis Pharma AG, Institutes for Biomedical Research, Novartis Campus, CH-4056 Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043012" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; DNA-Binding Proteins/agonists/antagonists & inhibitors/chemistry/metabolism ; Homeodomain Proteins/metabolism ; Humans ; Models, Molecular ; Multiprotein Complexes/agonists/antagonists & inhibitors/chemistry/metabolism ; Peptide Hydrolases/*chemistry/metabolism ; Protein Binding ; Structure-Activity Relationship ; Substrate Specificity ; Thalidomide/analogs & derivatives/*chemistry/metabolism ; Transcription Factors/metabolism ; Ubiquitin-Protein Ligases/antagonists & inhibitors/*chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-01-14
    Description: The structure of the DNA binding domain, determined at 1.8 angstrom resolution, contains a three-helix bundle that is capped by a four-stranded antiparallel beta sheet. This structure is a variant of the helix-turn-helix motif, typified by catabolite activator protein. In the heat shock transcription factor, the first helix of the motif (alpha 2) has an alpha-helical bulge and a proline-induced kink. The angle between the two helices of the motif (alpha 2 and alpha 3) is about 20 degrees smaller than the average for canonical helix-turn-helix proteins. Nevertheless, the relative positions of the first and third helices of the bundle (alpha 1 and alpha 3) are conserved. It is proposed here that the first helix of the three-helix bundle be considered a component of the helix-turn-helix motif.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harrison, C J -- Bohm, A A -- Nelson, H C -- GM08295/GM/NIGMS NIH HHS/ -- GM44086/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Jan 14;263(5144):224-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8284672" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Crystallography, X-Ray ; DNA/*metabolism ; DNA-Binding Proteins/*chemistry/metabolism ; *Heat-Shock Proteins ; *Helix-Loop-Helix Motifs ; Models, Molecular ; Molecular Sequence Data ; Protein Structure, Secondary ; Transcription Factors/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-05-07
    Description: Fundamental to all living organisms is the capacity to coordinate cell division and cell differentiation to generate appropriate numbers of specialized cells. Whereas eukaryotes use cyclins and cyclin-dependent kinases to balance division with cell fate decisions, equivalent regulatory systems have not been described in bacteria. Moreover, the mechanisms used by bacteria to tune division in line with developmental programs are poorly understood. Here we show that Caulobacter crescentus, a bacterium with an asymmetric division cycle, uses oscillating levels of the second messenger cyclic diguanylate (c-di-GMP) to drive its cell cycle. We demonstrate that c-di-GMP directly binds to the essential cell cycle kinase CckA to inhibit kinase activity and stimulate phosphatase activity. An upshift of c-di-GMP during the G1-S transition switches CckA from the kinase to the phosphatase mode, thereby allowing replication initiation and cell cycle progression. Finally, we show that during division, c-di-GMP imposes spatial control on CckA to install the replication asymmetry of future daughter cells. These studies reveal c-di-GMP to be a cyclin-like molecule in bacteria that coordinates chromosome replication with cell morphogenesis in Caulobacter. The observation that c-di-GMP-mediated control is conserved in the plant pathogen Agrobacterium tumefaciens suggests a general mechanism through which this global regulator of bacterial virulence and persistence coordinates behaviour and cell proliferation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lori, C -- Ozaki, S -- Steiner, S -- Bohm, R -- Abel, S -- Dubey, B N -- Schirmer, T -- Hiller, S -- Jenal, U -- England -- Nature. 2015 Jul 9;523(7559):236-9. doi: 10.1038/nature14473. Epub 2015 May 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Focal area of Infection Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland. ; Focal area of Structural Biology and Biophysics, Biozentrum, University of Basel, 4056 Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25945741" target="_blank"〉PubMed〈/a〉
    Keywords: Agrobacterium tumefaciens/genetics ; Bacterial Proteins/metabolism ; Catalytic Domain ; Caulobacter crescentus/cytology ; Cell Cycle/genetics/*physiology ; Cell Division/genetics/physiology ; Chromosomes/*genetics ; Conserved Sequence ; Cyclic GMP/*analogs & derivatives/metabolism ; Cyclins/metabolism ; DNA Replication/*genetics ; Models, Molecular ; Phosphoric Monoester Hydrolases/metabolism ; Phosphotransferases/chemistry/metabolism ; Protein Binding ; Protein Structure, Tertiary
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...