ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-05-26
    Description: Crystal structure analyses for biological macromolecules without known structural relatives entail solving the crystallographic phase problem. Typical de novo phase evaluations depend on incorporating heavier atoms than those found natively; most commonly, multi- or single-wavelength anomalous diffraction (MAD or SAD) experiments exploit selenomethionyl proteins. Here, we realize routine structure determination using intrinsic anomalous scattering from native macromolecules. We devised robust procedures for enhancing the signal-to-noise ratio in the slight anomalous scattering from generic native structures by combining data measured from multiple crystals at lower-than-usual x-ray energy. Using this multicrystal SAD method (5 to 13 equivalent crystals), we determined structures at modest resolution (2.8 to 2.3 angstroms) for native proteins varying in size (127 to 1148 unique residues) and number of sulfur sites (3 to 28). With no requirement for heavy-atom incorporation, such experiments provide an attractive alternative to selenomethionyl SAD experiments.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3769101/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3769101/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Qun -- Dahmane, Tassadite -- Zhang, Zhen -- Assur, Zahra -- Brasch, Julia -- Shapiro, Lawrence -- Mancia, Filippo -- Hendrickson, Wayne A -- GM034102/GM/NIGMS NIH HHS/ -- GM062270/GM/NIGMS NIH HHS/ -- GM095315/GM/NIGMS NIH HHS/ -- R01 GM034102/GM/NIGMS NIH HHS/ -- R01 GM062270/GM/NIGMS NIH HHS/ -- U54 GM075026/GM/NIGMS NIH HHS/ -- U54 GM095315/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 May 25;336(6084):1033-7. doi: 10.1126/science.1218753.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉New York Structural Biology Center, National Synchrotron Light Source (NSLS) X4, Brookhaven National Laboratory, Upton, NY 11973, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22628655" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/chemistry ; Crystallography, X-Ray/*methods ; Data Interpretation, Statistical ; GPI-Linked Proteins/chemistry ; Models, Molecular ; Nerve Tissue Proteins/chemistry ; *Protein Conformation ; Protein Kinases/chemistry ; Protein Structure, Tertiary ; Proteins/*chemistry ; Selenomethionine/chemistry ; Signal-To-Noise Ratio ; Sulfur/chemistry ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-03-23
    Description: In mitosis, the spindle assembly checkpoint (SAC) ensures genome stability by delaying chromosome segregation until all sister chromatids have achieved bipolar attachment to the mitotic spindle. The SAC is imposed by the mitotic checkpoint complex (MCC), whose assembly is catalysed by unattached chromosomes and which binds and inhibits the anaphase-promoting complex/cyclosome (APC/C), the E3 ubiquitin ligase that initiates chromosome segregation. Here, using the crystal structure of Schizosaccharomyces pombe MCC (a complex of mitotic spindle assembly checkpoint proteins Mad2, Mad3 and APC/C co-activator protein Cdc20), we reveal the molecular basis of MCC-mediated APC/C inhibition and the regulation of MCC assembly. The MCC inhibits the APC/C by obstructing degron recognition sites on Cdc20 (the substrate recruitment subunit of the APC/C) and displacing Cdc20 to disrupt formation of a bipartite D-box receptor with the APC/C subunit Apc10. Mad2, in the closed conformation (C-Mad2), stabilizes the complex by optimally positioning the Mad3 KEN-box degron to bind Cdc20. Mad3 and p31(comet) (also known as MAD2L1-binding protein) compete for the same C-Mad2 interface, which explains how p31(comet) disrupts MCC assembly to antagonize the SAC. This study shows how APC/C inhibition is coupled to degron recognition by co-activators.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chao, William C H -- Kulkarni, Kiran -- Zhang, Ziguo -- Kong, Eric H -- Barford, David -- Cancer Research UK/United Kingdom -- England -- Nature. 2012 Mar 21;484(7393):208-13. doi: 10.1038/nature10896.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22437499" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Anaphase-Promoting Complex-Cyclosome ; Cdc20 Proteins ; Cdh1 Proteins ; Cell Cycle Proteins/*chemistry/metabolism ; Conserved Sequence ; Crystallography, X-Ray ; Humans ; *M Phase Cell Cycle Checkpoints ; Mad2 Proteins ; Models, Molecular ; Multiprotein Complexes/*chemistry/metabolism ; Nuclear Proteins/*chemistry/metabolism ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Saccharomyces cerevisiae Proteins/chemistry/genetics/metabolism ; Schizosaccharomyces/*chemistry ; Schizosaccharomyces pombe Proteins/*chemistry/metabolism ; Spindle Apparatus ; Structure-Activity Relationship ; Substrate Specificity ; Ubiquitin-Protein Ligase Complexes/antagonists & ; inhibitors/chemistry/metabolism/ultrastructure
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-02-07
    Description: Dynamic variations in the structure of chromatin influence virtually all DNA-related processes in eukaryotes and are controlled in part by post-translational modifications of histones. One such modification, the acetylation of lysine 56 (H3K56ac) in the amino-terminal alpha-helix (alphaN) of histone H3, has been implicated in the regulation of nucleosome assembly during DNA replication and repair, and nucleosome disassembly during gene transcription. In Saccharomyces cerevisiae, the histone chaperone Rtt106 contributes to the deposition of newly synthesized H3K56ac-carrying H3-H4 complex on replicating DNA, but it is unclear how Rtt106 binds H3-H4 and specifically recognizes H3K56ac as there is no apparent acetylated lysine reader domain in Rtt106. Here, we show that two domains of Rtt106 are involved in a combinatorial recognition of H3-H4. An N-terminal domain homodimerizes and interacts with H3-H4 independently of acetylation while a double pleckstrin-homology (PH) domain binds the K56-containing region of H3. Affinity is markedly enhanced upon acetylation of K56, an effect that is probably due to increased conformational entropy of the alphaN helix of H3. Our data support a mode of interaction where the N-terminal homodimeric domain of Rtt106 intercalates between the two H3-H4 components of the (H3-H4)(2) tetramer while two double PH domains in the Rtt106 dimer interact with each of the two H3K56ac sites in (H3-H4)(2). We show that the Rtt106-(H3-H4)(2) interaction is important for gene silencing and the DNA damage response.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3439842/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3439842/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Su, Dan -- Hu, Qi -- Li, Qing -- Thompson, James R -- Cui, Gaofeng -- Fazly, Ahmed -- Davies, Brian A -- Botuyan, Maria Victoria -- Zhang, Zhiguo -- Mer, Georges -- P50 CA108961/CA/NCI NIH HHS/ -- R01 CA132878/CA/NCI NIH HHS/ -- R01 CA132878-04/CA/NCI NIH HHS/ -- R01 GM072719/GM/NIGMS NIH HHS/ -- England -- Nature. 2012 Feb 5;483(7387):104-7. doi: 10.1038/nature10861.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22307274" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Animals ; Binding Sites ; Crystallography, X-Ray ; DNA Damage ; Gene Silencing ; Genomic Instability ; Histones/*chemistry/*metabolism ; Lysine/analogs & derivatives/chemistry/metabolism ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular Chaperones/*chemistry/genetics/*metabolism ; Mutation/genetics ; Pliability ; Protein Binding ; Protein Multimerization ; Protein Structure, Tertiary ; Saccharomyces cerevisiae/*chemistry ; Saccharomyces cerevisiae Proteins/*chemistry/genetics/*metabolism ; Structure-Activity Relationship ; Substrate Specificity ; Xenopus laevis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...