ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-08-03
    Description: In the mitochondrial pathway of apoptosis, caspase activation is closely linked to mitochondrial outer membrane permeabilization (MOMP). Numerous pro-apoptotic signal-transducing molecules and pathological stimuli converge on mitochondria to induce MOMP. The local regulation and execution of MOMP involve proteins from the Bcl-2 family, mitochondrial lipids, proteins that regulate bioenergetic metabolite flux, and putative components of the permeability transition pore. MOMP is lethal because it results in the release of caspase-activating molecules and caspase-independent death effectors, metabolic failure in the mitochondria, or both. Drugs designed to suppress excessive MOMP may avoid pathological cell death, and the therapeutic induction of MOMP may restore apoptosis in cancer cells in which it is disabled. The general rules governing the pathophysiology of MOMP and controversial issues regarding its regulation are discussed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Green, Douglas R -- Kroemer, Guido -- New York, N.Y. -- Science. 2004 Jul 30;305(5684):626-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Cellular Immunology, La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, CA 92121, USA. doug@liai.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15286356" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Disease/*etiology ; Humans ; Intracellular Membranes/*physiology ; Mitochondria/*physiology ; Models, Biological ; Neoplasms/physiopathology ; Permeability ; Proteins/*metabolism ; Proto-Oncogene Proteins c-bcl-2/metabolism ; Signal Transduction ; Viral Proteins/metabolism ; Virus Physiological Phenomena
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-02-14
    Description: The tumor suppressor p53 exerts its anti-neoplastic activity primarily through the induction of apoptosis. We found that cytosolic localization of endogenous wild-type or trans-activation-deficient p53 was necessary and sufficient for apoptosis. p53 directly activated the proapoptotic Bcl-2 protein Bax in the absence of other proteins to permeabilize mitochondria and engage the apoptotic program. p53 also released both proapoptotic multidomain proteins and BH3-only proteins [Proapoptotic Bcl-2 family proteins that share only the third Bcl-2 homology domain (BH3)] that were sequestered by Bcl-xL. The transcription-independent activation of Bax by p53 occurred with similar kinetics and concentrations to those produced by activated Bid. We propose that when p53 accumulates in the cytosol, it can function analogously to the BH3-only subset of proapoptotic Bcl-2 proteins to activate Bax and trigger apoptosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chipuk, Jerry E -- Kuwana, Tomomi -- Bouchier-Hayes, Lisa -- Droin, Nathalie M -- Newmeyer, Donald D -- Schuler, Martin -- Green, Douglas R -- AI40646/AI/NIAID NIH HHS/ -- AI47891/AI/NIAID NIH HHS/ -- GM52735/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Feb 13;303(5660):1010-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Cellular Immunology, La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, CA 92121, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14963330" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; BH3 Interacting Domain Death Agonist Protein ; Carrier Proteins/metabolism ; Cell Line, Transformed ; Cell Nucleus/metabolism ; Cells, Cultured ; Cytochromes c/metabolism ; Cytosol/metabolism ; Gene Expression Regulation ; Genes, p53 ; HeLa Cells ; Humans ; Intracellular Membranes/*physiology ; Liposomes/metabolism ; Mice ; Mitochondria/*physiology ; Mutation ; Permeability ; Protein Conformation ; Proto-Oncogene Proteins/chemistry/genetics/*metabolism ; Proto-Oncogene Proteins c-bcl-2/metabolism ; Recombinant Fusion Proteins/metabolism ; Tumor Suppressor Protein p53/chemistry/*metabolism ; Ultraviolet Rays ; Wheat Germ Agglutinins/pharmacology ; bcl-2-Associated X Protein ; bcl-X Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-27
    Description: Alterations of mitochondrial functions are linked to multiple degenerative or acute diseases. As mitochondria age in our cells, they become progressively inefficient and potentially toxic, and acute damage can trigger the permeabilization of mitochondrial membranes to initiate apoptosis or necrosis. Moreover, mitochondria have an important role in pro-inflammatory signaling. Autophagic turnover of cellular constituents, be it general or specific for mitochondria (mitophagy), eliminates dysfunctional or damaged mitochondria, thus counteracting degeneration, dampening inflammation, and preventing unwarranted cell loss. Decreased expression of genes that regulate autophagy or mitophagy can cause degenerative diseases in which deficient quality control results in inflammation and the death of cell populations. Thus, a combination of mitochondrial dysfunction and insufficient autophagy may contribute to multiple aging-associated pathologies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3405151/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3405151/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Green, Douglas R -- Galluzzi, Lorenzo -- Kroemer, Guido -- R01 AI040646/AI/NIAID NIH HHS/ -- R01 AI047891/AI/NIAID NIH HHS/ -- R01 GM096208/GM/NIGMS NIH HHS/ -- R37 GM052735/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Aug 26;333(6046):1109-12. doi: 10.1126/science.1201940.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA. douglas.green@stjude.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21868666" target="_blank"〉PubMed〈/a〉
    Keywords: *Aging ; Animals ; Apoptosis ; *Autophagy ; Cell Aging ; *Cell Death ; Humans ; Inflammation/*physiopathology ; Mitochondria/*physiology ; Necrosis ; Neurodegenerative Diseases/physiopathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...