ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Milankovitch cycles  (2)
  • Biology
Collection
Keywords
Publisher
Years
  • 1
    Publication Date: 2021-06-27
    Description: The recovery of benthic communities inside the western Gulfof Maine fishing closure area was evaluated by comparing invertebrate assemblages at sites inside and outside of the closure four to six years after the closure was established. The major restriction imposed by the closurewas a year-round prohibition of bottom gillnets and otter trawls. A total of 163 seafloor sites (~half inside and half outside the closure) within a 515-km2 study area were sampled with some combination of Shipek grab, Wildco box corer, or underwater video. Bottom types ranged from mud (silt and clay) to boulders, and the effects of the closure on univariate measures (total density, biomass, taxonomicrichness) of benthos varied widely among sediment types. For sites with predominantly mud sediments, there were mixed effects on inside and outside infauna and no effect onepifauna. For sites with mainly sand sediments, there were higher density, biomass, and taxonomic richness for infauna inside the closure, but no significant effects on epifauna. For sites dominated by gravel (which included boulders in some areas), there were no effects on infauna but strong effects on epifaunal density and taxonomic richness. For fishing gear, the data indicated that infauna recovered insand from the impacts of otter trawls operated inside the closure but that they did not recover in mud, and that epifauna recovered on gravel bottoms from the impact of gillnets used inside the closure. The magnitudes of impact and recovery, however, cannot be inferred directly from ourdata because of a confounding factor of different fishing intensities outside the closure for a direct comparison ofpreclosure and postclosure data. The overall negative impact of trawls is likely underestimated by our data,whereas the negative impact of gillnets is likely overestimated.
    Keywords: Biology ; Ecology ; Fisheries
    Repository Name: AquaDocs
    Type: article , TRUE
    Format: application/pdf
    Format: application/pdf
    Format: 308
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1437-3262
    Keywords: Paleoclimate ; 3D visualization ; Milankovitch cycles ; Orbital models ; Equatorial Pacific ; Paleoceanography
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Recent developments in continuous core-logging techniques now permit us to recover the high-resolution time series necessary for the detailed spectral analyses of paleoclimatic proxy records. When applied to long records recovered by scientific drilling (5–10 Ma) they enable us to look at the long-term history and evolution of the ocean’s response to orbital forcing. A serious limitation in these studies is the need to display the complex, multidimensional spatial and temporal interactions of the ocean-climate system in an easily comprehensible manner. We have addressed this issue by developing a series 3D visualization tools which permit visualization of the role of the orbital parameters in determining the latitudinal variation of insolation as well as the interactive exploration of multidimensional data sets. The ORBITS tool allows us to visualize the effect of orbital eccentricity, precession, and tilt on the latitudinal distribution of insolation on the earth at the solstices and the equinoxes for any time over the past 5 Ma (for Berger’s orbital model) or 10 Ma (for Laskar’s orbital model). The effect of the orbital parameters on insolation can be viewed individually, in pairs, or all three together. By moving the model steadily through time, the rate at which orbitally induced changes in insolation occur can also be visualized. To look at the ocean’s response to orbital forcing we take the long time series generated from our paleoclimatic proxies and calculate their spectrum over a fixed, but sliding, time window. To view the complex multidimensional relationships found in these evolutionary spectral analyses, we use another interactive 3D data exploration tool developed at the University of New Brunswick (Canada). This tool (FLEDERMAUS) uses a six-degrees-of-freedom input device (BAT) and a series of software modules for color coding, shading, and rendering complex data sets, to allow the user to interactively “fly” through the multidimensional data. Through the use of color, texture, and 3D position, as many as six or seven variables can be explored in a simple and intuitive manner. With special liquid-crystal-display glasses, the scene can be viewed in true “stereo.” We use these tools to explore the relationship between orbital forcing and the response of the benthic isotope and calcium carbonate record at ODP Site 846 (90°W and 5°S) This analysis shows an equatorial Pacific carbonate record which has a large component of linear response to tilt, but little linear response to precession. There is a major shift in response, from a carbonate-dominated response to an isotope (ice volume)-dominated response at approximately 4.5 Ma, and as expected, there is a large nonlinear response at the lower frequencies (400 and 100 kyr) during the past 800 kyr to 1 Ma
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0016-7835
    Keywords: Key words Paleoclimate ; 3D visualization ; Milankovitch cycles ; Orbital models ; Equatorial Pacific ; Paleoceanography
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  Recent developments in continuous core-logging techniques now permit us to recover the high-resolution time series necessary for the detailed spectral analyses of paleoclimatic proxy records. When applied to long records recovered by scientific drilling (5–10 Ma) they enable us to look at the long-term history and evolution of the ocean's response to orbital forcing. A serious limitation in these studies is the need to display the complex, multidimensional spatial and temporal interactions of the ocean-climate system in an easily comprehensible manner. We have addressed this issue by developing a series 3D visualization tools which permit visualization of the role of the orbital parameters in determining the latitudinal variation of insolation as well as the interactive exploration of multidimensional data sets. The ORBITS tool allows us to visualize the effect of orbital eccentricity, precession, and tilt on the latitudinal distribution of insolation on the earth at the solstices and the equinoxes for any time over the past 5 Ma (for Berger's orbital model) or 10 Ma (for Laskar's orbital model). The effect of the orbital parameters on insolation can be viewed individually, in pairs, or all three together. By moving the model steadily through time, the rate at which orbitally induced changes in insolation occur can also be visualized. To look at the ocean's response to orbital forcing we take the long time series generated from our paleoclimatic proxies and calculate their spectrum over a fixed, but sliding, time window. To view the complex multidimensional relationships found in these evolutionary spectral analyses, we use another interactive 3D data exploration tool developed at the University of New Brunswick (Canada). This tool (FLEDERMAUS) uses a six-degrees-of-freedom input device (BAT) and a series of software modules for color coding, shading, and rendering complex data sets, to allow the user to interactively "fly" through the multidimensional data. Through the use of color, texture, and 3D position, as many as six or seven variables can be explored in a simple and intuitive manner. With special liquid-crystal-display glasses, the scene can be viewed in true "stereo." We use these tools to explore the relationship between orbital forcing and the response of the benthic isotope and calcium carbonate record at ODP Site 846 (90°W and 5°S) This analysis shows an equatorial Pacific carbonate record which has a large component of linear response to tilt, but little linear response to precession. There is a major shift in response, from a carbonate-dominated response to an isotope (ice volume)-dominated response at approximately 4.5 Ma, and as expected, there is a large nonlinear response at the lower frequencies (400 and 100 kyr) during the past 800 kyr to 1 Ma
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...