ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Microsporogenesis
  • AGAMOUS
Collection
Keywords
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Sexual plant reproduction 9 (1996), S. 216-220 
    ISSN: 1432-2145
    Keywords: Key words Maize pollen ; Male sterility ; Microsporogenesis ; Gametophytic gene expression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Several pollen-specific genes from different species have been isolated and characterized at the molecular level, but the precise role of most of them is unknown. Mutant analysis represents a direct approach to uncovering gene function, but the paucity of available mutants affecting pollen development and/or function and the poor characterization of the known mutants have so far limited the exploitation of this approach. Here we present the cytological characterization of gametophytic male sterile-1 (gaMS-1), a maize mutant that we identified in a program of transposon insertion mutagenesis for the production of mutations in gametophytically acting genes involved in microsporogenesis. gaMS-1 is expressed during or immediately after the first microspore division and leads to the production of immature, non-functional pollen grains. The mutation appears to affect the events leading to the developmental switch that follows the first microspore mitosis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Sexual plant reproduction 9 (1996), S. 216-220 
    ISSN: 1432-2145
    Keywords: Maize pollen ; Male sterility ; Microsporogenesis ; Gametophytic gene expression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Several pollen-specific genes from different species have been isolated and characterized at the molecular level, but the precise role of most of them is unknown. Mutant analysis represents a direct approach to uncovering gene function, but the paucity of available mutants affecting pollen development and/or function and the poor characterization of the known mutants have so far limited the exploitation of this approach. Here we present the cytological characterization ofgametophytic male sterile-1 (gaMS-1), a maize mutant that we identified in a program of transposon insertion mutagenesis for the production of mutations in gametophytically acting genes involved in microsporogenesis.gaMS-1 is expressed during or immediately after the first microspore division and leads to the production of immature, nonfunctional pollen grains. The mutation appears to affect the events leading to the developmental switch that follows the first microspore mitosis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Plant molecular biology 38 (1998), S. 1147-1160 
    ISSN: 1573-5028
    Keywords: hazelnut ; Corylus avellana ; MADS box genes ; flower development ; ovule ; AGAMOUS
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Hazelnut (Corylus avellana L.) is a species of economic interest that shows a peculiar floral biology. Unlike most of the angiosperms, which produce ovules during floral development such that they are ready for pollen at anthesis, hazelnut ovary development is delayed and triggered by compatible pollination. In order to elucidate the mechanisms regulating this unusual process and the role of the MADS box genes in ovary development, a cDNA library from pollinated styles of hazelnut was screened with a mixture of MADS box genes from different plant species. CaMADS1 (Corylus avellana MADS box), a floral-specific MADS box gene, was isolated, and characterized as belonging to the sub-family of the AGAMOUS genes. Northern blot, RT-PCR analyses and in situ hybridization experiments show a precise correlation between ovary development and CaMADS1 expression, indicating a role of this MADS box gene in the processes of floral organogenesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...