ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-09
    Description: Comprehensive high-resolution structural maps are central to functional exploration and understanding in biology. For the nervous system, in which high resolution and large spatial extent are both needed, such maps are scarce as they challenge data acquisition and analysis capabilities. Here we present for the mouse inner plexiform layer--the main computational neuropil region in the mammalian retina--the dense reconstruction of 950 neurons and their mutual contacts. This was achieved by applying a combination of crowd-sourced manual annotation and machine-learning-based volume segmentation to serial block-face electron microscopy data. We characterize a new type of retinal bipolar interneuron and show that we can subdivide a known type based on connectivity. Circuit motifs that emerge from our data indicate a functional mechanism for a known cellular response in a ganglion cell that detects localized motion, and predict that another ganglion cell is motion sensitive.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Helmstaedter, Moritz -- Briggman, Kevin L -- Turaga, Srinivas C -- Jain, Viren -- Seung, H Sebastian -- Denk, Winfried -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Aug 8;500(7461):168-74. doi: 10.1038/nature12346.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck Institute for Medical Research, D-69120 Heidelberg, Germany. mhelmstaedter@neuro.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23925239" target="_blank"〉PubMed〈/a〉
    Keywords: Amacrine Cells/cytology/physiology ; Animals ; Cell Communication ; *Connectome ; Image Processing, Computer-Assisted ; Mice ; Mice, Inbred C57BL ; Microscopy, Electron ; *Models, Biological ; Neuropil/physiology ; Retina/*cytology/*physiology ; Retinal Ganglion Cells/cytology/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-03-11
    Description: The proper connectivity between neurons is essential for the implementation of the algorithms used in neural computations, such as the detection of directed motion by the retina. The analysis of neuronal connectivity is possible with electron microscopy, but technological limitations have impeded the acquisition of high-resolution data on a large enough scale. Here we show, using serial block-face electron microscopy and two-photon calcium imaging, that the dendrites of mouse starburst amacrine cells make highly specific synapses with direction-selective ganglion cells depending on the ganglion cell's preferred direction. Our findings indicate that a structural (wiring) asymmetry contributes to the computation of direction selectivity. The nature of this asymmetry supports some models of direction selectivity and rules out others. It also puts constraints on the developmental mechanisms behind the formation of synaptic connections. Our study demonstrates how otherwise intractable neurobiological questions can be addressed by combining functional imaging with the analysis of neuronal connectivity using large-scale electron microscopy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Briggman, Kevin L -- Helmstaedter, Moritz -- Denk, Winfried -- England -- Nature. 2011 Mar 10;471(7337):183-8. doi: 10.1038/nature09818.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Medical Research, Department of Biomedical Optics, Heidelberg 69120, Germany. briggman@mpimf-heidelberg.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21390125" target="_blank"〉PubMed〈/a〉
    Keywords: Amacrine Cells/cytology/physiology/ultrastructure ; Animals ; Calcium Signaling ; Dendrites/physiology ; Mice ; Mice, Inbred C57BL ; Microscopy, Electron ; Microscopy, Fluorescence ; Models, Neurological ; Neural Pathways/cytology/*physiology/ultrastructure ; Neuroanatomical Tract-Tracing Techniques ; Retina/anatomy & histology/*cytology/*physiology/ultrastructure ; Retinal Ganglion Cells/cytology/physiology/ultrastructure ; Synapses/physiology/ultrastructure
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...