ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1999-04-09
    Description: Phosphorylation of inhibitor of kappa B (IkappaB) proteins is an important step in the activation of the transcription nuclear factor kappa B (NF-kappaB) and requires two IkappaB kinases, IKK1 (IKKalpha) and IKK2 (IKKbeta). Mice that are devoid of the IKK2 gene had extensive liver damage from apoptosis and died as embryos, but these mice could be rescued by the inactivation of the gene encoding tumor necrosis factor receptor 1. Mouse embryonic fibroblast cells that were isolated from IKK2-/- embryos showed a marked reduction in tumor necrosis factor-alpha (TNF-alpha)- and interleukin-1alpha-induced NF-kappaB activity and an enhanced apoptosis in response to TNF-alpha. IKK1 associated with NF-kappaB essential modulator (IKKgamma/IKKAP1), another component of the IKK complex. These results show that IKK2 is essential for mouse development and cannot be substituted with IKK1.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Q -- Van Antwerp, D -- Mercurio, F -- Lee, K F -- Verma, I M -- New York, N.Y. -- Science. 1999 Apr 9;284(5412):321-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Salk Institute, La Jolla, CA 92037, USA. Signal Pharmaceuticals, San Diego, CA 92121, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10195897" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Cell Line ; DNA-Binding Proteins/metabolism ; Embryonic and Fetal Development ; Gene Targeting ; I-kappa B Kinase ; I-kappa B Proteins ; Interleukin-1/pharmacology ; Liver/cytology/*embryology ; Mice ; NF-kappa B/metabolism ; Phosphorylation ; Polymerase Chain Reaction ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Receptors, Tumor Necrosis Factor/genetics/metabolism ; Recombinant Fusion Proteins/metabolism ; Sequence Deletion ; Signal Transduction ; Transcription Factor RelA ; Transcription Factors/metabolism ; Tumor Necrosis Factor-alpha/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1999-01-29
    Description: Efficient gene transfer into human hematopoietic stem cells (HSCs) is an important goal in the study of the hematopoietic system as well as for gene therapy of hematopoietic disorders. A lentiviral vector based on the human immunodeficiency virus (HIV) was able to transduce human CD34+ cells capable of stable, long-term reconstitution of nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. High-efficiency transduction occurred in the absence of cytokine stimulation and resulted in transgene expression in multiple lineages of human hematopoietic cells for up to 22 weeks after transplantation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miyoshi, H -- Smith, K A -- Mosier, D E -- Verma, I M -- Torbett, B E -- CA44360/CA/NCI NIH HHS/ -- DK49886/DK/NIDDK NIH HHS/ -- HL53670/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1999 Jan 29;283(5402):682-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9924027" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD34/*analysis ; Bone Marrow Cells/cytology ; Cell Division ; Cell Survival ; Colony-Forming Units Assay ; Gene Expression ; *Gene Transfer Techniques ; *Genetic Vectors ; Green Fluorescent Proteins ; HIV/*genetics ; Hematopoiesis ; *Hematopoietic Stem Cell Transplantation ; *Hematopoietic Stem Cells/cytology/immunology ; Humans ; Leukemia Virus, Murine/genetics ; Luminescent Proteins/genetics ; Mice ; Mice, Inbred NOD ; Mice, SCID ; Promoter Regions, Genetic ; Transfection ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-10-23
    Description: Glioblastoma multiforme (GBM) is the most common and aggressive malignant primary brain tumor in humans. Here we show that gliomas can originate from differentiated cells in the central nervous system (CNS), including cortical neurons. Transduction by oncogenic lentiviral vectors of neural stem cells (NSCs), astrocytes, or even mature neurons in the brains of mice can give rise to malignant gliomas. All the tumors, irrespective of the site of lentiviral vector injection (the initiating population), shared common features of high expression of stem or progenitor markers and low expression of differentiation markers. Microarray analysis revealed that tumors of astrocytic and neuronal origin match the mesenchymal GBM subtype. We propose that most differentiated cells in the CNS upon defined genetic alterations undergo dedifferentiation to generate a NSC or progenitor state to initiate and maintain the tumor progression, as well as to give rise to the heterogeneous populations observed in malignant gliomas.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3595315/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3595315/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Friedmann-Morvinski, Dinorah -- Bushong, Eric A -- Ke, Eugene -- Soda, Yasushi -- Marumoto, Tomotoshi -- Singer, Oded -- Ellisman, Mark H -- Verma, Inder M -- 5P41RR004050/RR/NCRR NIH HHS/ -- HL053670/HL/NHLBI NIH HHS/ -- P30 CA014195/CA/NCI NIH HHS/ -- P30 CA014195-38/CA/NCI NIH HHS/ -- R01 HL053670/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2012 Nov 23;338(6110):1080-4. doi: 10.1126/science.1226929. Epub 2012 Oct 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23087000" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Astrocytes/metabolism/*pathology ; Brain Neoplasms/*genetics/*pathology ; Genes, Neurofibromatosis 1 ; Genes, p53 ; Glioblastoma/genetics/pathology ; Glioma/*genetics/*pathology ; Lentivirus ; Mice ; Mice, Transgenic ; Nerve Tissue Proteins/genetics ; Neural Stem Cells/metabolism/pathology ; Neurons/metabolism/*pathology ; *Oncogenes ; Transduction, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-06-26
    Description: The nuclear factor-kappa B (NF-kappaB) family of transcription factors plays a seminal role in inflammation, apoptosis, development, and cancer. Modulation of NF-kappaB-mediated gene expression in response to diverse signals is coordinated by the IkappaB kinase (IKK) complex. We identified ELKS, an essential regulatory subunit of the IKK complex. Silencing ELKS expression by RNA interference blocked induced expression of NF-kappaB target genes, including the NF-kappaB inhibitor IkappaBalpha and proinflammatory genes such as cyclo-oxygenase 2 and interleukin 8. These cells were also not protected from apoptosis in response to cytokines. ELKS likely functions by recruiting IkappaBalpha to the IKK complex and thus serves a regulatory function for IKK activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ducut Sigala, Jeanette L -- Bottero, Virginie -- Young, David B -- Shevchenko, Andrej -- Mercurio, Frank -- Verma, Inder M -- New York, N.Y. -- Science. 2004 Jun 25;304(5679):1963-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Salk Institute for Biological Sciences, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15218148" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Animals ; Apoptosis ; Carrier Proteins/genetics/*metabolism ; Cell Line ; Cyclooxygenase 2 ; Gene Expression ; Genes, Reporter ; HeLa Cells ; Humans ; I-kappa B Kinase ; I-kappa B Proteins/genetics/metabolism ; Interleukin-1/pharmacology ; Interleukin-8/genetics ; Isoenzymes/genetics ; Membrane Proteins ; Mice ; Mice, Knockout ; Mitogen-Activated Protein Kinases/metabolism ; Mutation ; NF-kappa B/*metabolism ; Nerve Tissue Proteins/genetics/*metabolism ; Phosphorylation ; Precipitin Tests ; Prostaglandin-Endoperoxide Synthases/genetics ; Protein-Serine-Threonine Kinases/*metabolism ; RNA Interference ; Tumor Necrosis Factor-alpha/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-09-09
    Description: Mutations in the tumour suppressor gene BRCA1 lead to breast and/or ovarian cancer. Here we show that loss of Brca1 in mice results in transcriptional de-repression of the tandemly repeated satellite DNA. Brca1 deficiency is accompanied by a reduction of condensed DNA regions in the genome and loss of ubiquitylation of histone H2A at satellite repeats. BRCA1 binds to satellite DNA regions and ubiquitylates H2A in vivo. Ectopic expression of H2A fused to ubiquitin reverses the effects of BRCA1 loss, indicating that BRCA1 maintains heterochromatin structure via ubiquitylation of histone H2A. Satellite DNA de-repression was also observed in mouse and human BRCA1-deficient breast cancers. Ectopic expression of satellite DNA can phenocopy BRCA1 loss in centrosome amplification, cell-cycle checkpoint defects, DNA damage and genomic instability. We propose that the role of BRCA1 in maintaining global heterochromatin integrity accounts for many of its tumour suppressor functions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3240576/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3240576/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhu, Quan -- Pao, Gerald M -- Huynh, Alexis M -- Suh, Hoonkyo -- Tonnu, Nina -- Nederlof, Petra M -- Gage, Fred H -- Verma, Inder M -- NS50217/NS/NINDS NIH HHS/ -- NS52842/NS/NINDS NIH HHS/ -- R01 NS050217/NS/NINDS NIH HHS/ -- R01 NS050217-05/NS/NINDS NIH HHS/ -- R01 NS052842/NS/NINDS NIH HHS/ -- R01 NS052842-04/NS/NINDS NIH HHS/ -- England -- Nature. 2011 Sep 7;477(7363):179-84. doi: 10.1038/nature10371.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21901007" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; BRCA1 Protein/deficiency/genetics/*metabolism ; Breast/cytology ; Breast Neoplasms/*genetics/pathology ; Cell Line, Tumor ; Cells, Cultured ; DNA, Satellite/genetics ; Epithelial Cells/metabolism ; Female ; Gene Expression Regulation, Neoplastic ; *Gene Silencing ; Genes, BRCA1/*physiology ; Genomic Instability/genetics ; HeLa Cells ; Heterochromatin/*genetics/*metabolism ; Histones/metabolism ; Humans ; Mice ; Ovarian Neoplasms/genetics ; RNA, Messenger/genetics ; Transcription, Genetic/genetics ; Ubiquitin-Protein Ligases/metabolism ; Ubiquitinated Proteins/metabolism ; Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-02-21
    Description: Ependymomas are common childhood brain tumours that occur throughout the nervous system, but are most common in the paediatric hindbrain. Current standard therapy comprises surgery and radiation, but not cytotoxic chemotherapy as it does not further increase survival. Whole-genome and whole-exome sequencing of 47 hindbrain ependymomas reveals an extremely low mutation rate, and zero significant recurrent somatic single nucleotide variants. Although devoid of recurrent single nucleotide variants and focal copy number aberrations, poor-prognosis hindbrain ependymomas exhibit a CpG island methylator phenotype. Transcriptional silencing driven by CpG methylation converges exclusively on targets of the Polycomb repressive complex 2 which represses expression of differentiation genes through trimethylation of H3K27. CpG island methylator phenotype-positive hindbrain ependymomas are responsive to clinical drugs that target either DNA or H3K27 methylation both in vitro and in vivo. We conclude that epigenetic modifiers are the first rational therapeutic candidates for this deadly malignancy, which is epigenetically deregulated but genetically bland.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4174313/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4174313/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mack, S C -- Witt, H -- Piro, R M -- Gu, L -- Zuyderduyn, S -- Stutz, A M -- Wang, X -- Gallo, M -- Garzia, L -- Zayne, K -- Zhang, X -- Ramaswamy, V -- Jager, N -- Jones, D T W -- Sill, M -- Pugh, T J -- Ryzhova, M -- Wani, K M -- Shih, D J H -- Head, R -- Remke, M -- Bailey, S D -- Zichner, T -- Faria, C C -- Barszczyk, M -- Stark, S -- Seker-Cin, H -- Hutter, S -- Johann, P -- Bender, S -- Hovestadt, V -- Tzaridis, T -- Dubuc, A M -- Northcott, P A -- Peacock, J -- Bertrand, K C -- Agnihotri, S -- Cavalli, F M G -- Clarke, I -- Nethery-Brokx, K -- Creasy, C L -- Verma, S K -- Koster, J -- Wu, X -- Yao, Y -- Milde, T -- Sin-Chan, P -- Zuccaro, J -- Lau, L -- Pereira, S -- Castelo-Branco, P -- Hirst, M -- Marra, M A -- Roberts, S S -- Fults, D -- Massimi, L -- Cho, Y J -- Van Meter, T -- Grajkowska, W -- Lach, B -- Kulozik, A E -- von Deimling, A -- Witt, O -- Scherer, S W -- Fan, X -- Muraszko, K M -- Kool, M -- Pomeroy, S L -- Gupta, N -- Phillips, J -- Huang, A -- Tabori, U -- Hawkins, C -- Malkin, D -- Kongkham, P N -- Weiss, W A -- Jabado, N -- Rutka, J T -- Bouffet, E -- Korbel, J O -- Lupien, M -- Aldape, K D -- Bader, G D -- Eils, R -- Lichter, P -- Dirks, P B -- Pfister, S M -- Korshunov, A -- Taylor, M D -- P30 CA016672/CA/NCI NIH HHS/ -- P50 CA097257/CA/NCI NIH HHS/ -- R01 CA121941/CA/NCI NIH HHS/ -- R01 CA148621/CA/NCI NIH HHS/ -- R01 CA163737/CA/NCI NIH HHS/ -- R01CA148699/CA/NCI NIH HHS/ -- R01CA159859/CA/NCI NIH HHS/ -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2014 Feb 27;506(7489):445-50. doi: 10.1038/nature13108. Epub 2014 Feb 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Developmental & Stem Cell Biology Program, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada [2] Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada [3] Division of Neurosurgery, University of Toronto, Toronto, Ontario M5S 1A8, Canada [4]. ; 1] Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany [2] Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg 69120, Germany [3] German Cancer Consortium (DKTK), Heidelberg 69120, Germany [4]. ; 1] German Cancer Consortium (DKTK), Heidelberg 69120, Germany [2] Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany. ; 1] German Cancer Consortium (DKTK), Heidelberg 69120, Germany [2] Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany. ; Department of Molecular Genetics, Banting and Best Department of Medical Research, The Donnelly Centre, University of Toronto, Toronto, Ontario M4N 1X8, Canada. ; 1] German Cancer Consortium (DKTK), Heidelberg 69120, Germany [2] Genome Biology, European Molecular Biology, Laboratory Meyerhofstr. 1, Heidelberg 69117, Germany. ; 1] Developmental & Stem Cell Biology Program, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada [2] Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada. ; Developmental & Stem Cell Biology Program, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada. ; Department of Genetics, Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, New Hampshire 03756, USA. ; 1] Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany [2] German Cancer Consortium (DKTK), Heidelberg 69120, Germany. ; 1] German Cancer Consortium (DKTK), Heidelberg 69120, Germany [2] Division of Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany. ; Department of Neurology, Harvard Medical School, Children's Hospital Boston, MIT, Boston, Massachusetts 02115, USA. ; Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. ; 1] Ontario Cancer Institute, Princess Margaret Cancer Centre-University Health Network, Toronto, Ontario M5G 1L7, Canada [2] Ontario Institute for Cancer Research, Toronto, Ontario M5G 1L7, Canada. ; Cancer Epigenetics Discovery Performance Unit, GlaxoSmithKline Pharmaceuticals, Collegeville, Pennsylvania 19426, USA. ; Department of Oncogenomics, Academic Medical Center, Amsterdam 1105, The Netherlands. ; 1] Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg 69120, Germany [2] German Cancer Consortium (DKTK), Heidelberg 69120, Germany [3] CCU Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany. ; 1] Centre for High-Throughput Biology, Department of Microbiology & Immunology, University of British Columbia, Vancouver, V6T 1Z4 British Columbia, Canada [2] Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada. ; 1] Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada [2] Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6H 3N1, Canada. ; Department of Pediatrics and National Capital Consortium, Uniformed Services University, Bethesda, Maryland 20814, USA. ; Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, Utah 84132, USA. ; Pediatric Neurosurgery, Catholic University Medical School, Gemelli Hospital, Rome 00168, Italy. ; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA. ; Department of Pediatrics, Virginia Commonwealth, Richmond, Virginia 23298-0646, USA. ; Department of Pathology, University of Warsaw, Children's Memorial Health Institute University of Warsaw, Warsaw 04-730, Poland. ; Division of Anatomical Pathology, Department of Pathology and Molecular Medicine, McMaster University, Hamilton General Hospital, Hamilton, Ontario L8S 4K1, Canada. ; 1] Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg 69120, Germany [2] German Cancer Consortium (DKTK), Heidelberg 69120, Germany. ; 1] German Cancer Consortium (DKTK), Heidelberg 69120, Germany [2] Department of Neuropathology Ruprecht-Karls-University Heidelberg, Institute of Pathology, Heidelberg 69120, Germany. ; 1] University of Michigan Cell and Developmental Biology, Ann Arbor, Michigan 48109-2200, USA [2] Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA. ; Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA. ; Department of Neurosurgery, University of California San Francisco, San Francisco, California 94143-0112, USA. ; Departments of Neurology, Pediatrics, and Neurosurgery, University of California, San Francisco, The Helen Diller Family Cancer Research Building, San Francisco, California 94158, USA. ; 1] Developmental & Stem Cell Biology Program, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada [2] Department of Neuro-oncology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada. ; Department of Haematology and Oncology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada. ; 1] Developmental & Stem Cell Biology Program, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada [2] Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada [3] Division of Neurosurgery, University of Toronto, Toronto, Ontario M5S 1A8, Canada. ; Departments of Pediatrics and Human Genetics, McGill University and the McGill University Health Center Research Institute, Montreal, Quebec H3Z 2Z3, Canada. ; Department of Neuro-oncology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada. ; Genome Biology, European Molecular Biology, Laboratory Meyerhofstr. 1, Heidelberg 69117, Germany. ; 1] Ontario Cancer Institute, Princess Margaret Cancer Centre-University Health Network, Toronto, Ontario M5G 1L7, Canada [2] Ontario Institute for Cancer Research, Toronto, Ontario M5G 1L7, Canada [3] Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1X8, Canada. ; 1] Developmental & Stem Cell Biology Program, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada [2] Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada [3] Division of Neurosurgery, University of Toronto, Toronto, Ontario M5S 1A8, Canada [4] Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada. ; 1] Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany [2] Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg 69120, Germany [3] German Cancer Consortium (DKTK), Heidelberg 69120, Germany. ; 1] German Cancer Consortium (DKTK), Heidelberg 69120, Germany [2] University of Michigan Cell and Developmental Biology, Ann Arbor, Michigan 48109-2200, USA [3] CCU Neuropathology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24553142" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain Neoplasms/drug therapy/genetics ; CpG Islands/*genetics ; DNA Methylation/drug effects ; Embryonic Stem Cells/metabolism ; Ependymoma/drug therapy/*genetics ; Epigenesis, Genetic/*genetics ; Epigenomics ; Female ; Gene Expression Regulation, Neoplastic ; Gene Silencing/drug effects ; Histones/drug effects/metabolism ; Humans ; Infant ; Mice ; Mice, Inbred NOD ; Mice, SCID ; Mutation/genetics ; Phenotype ; Polycomb Repressive Complex 2/metabolism ; Prognosis ; Rhombencephalon/pathology ; Xenograft Model Antitumor Assays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-10-12
    Description: In eukaryotes, post-translational modification of histones is critical for regulation of chromatin structure and gene expression. EZH2 is the catalytic subunit of the polycomb repressive complex 2 (PRC2) and is involved in repressing gene expression through methylation of histone H3 on lysine 27 (H3K27). EZH2 overexpression is implicated in tumorigenesis and correlates with poor prognosis in several tumour types. Additionally, somatic heterozygous mutations of Y641 and A677 residues within the catalytic SET domain of EZH2 occur in diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma. The Y641 residue is the most frequently mutated residue, with up to 22% of germinal centre B-cell DLBCL and follicular lymphoma harbouring mutations at this site. These lymphomas have increased H3K27 tri-methylation (H3K27me3) owing to altered substrate preferences of the mutant enzymes. However, it is unknown whether specific, direct inhibition of EZH2 methyltransferase activity will be effective in treating EZH2 mutant lymphomas. Here we demonstrate that GSK126, a potent, highly selective, S-adenosyl-methionine-competitive, small-molecule inhibitor of EZH2 methyltransferase activity, decreases global H3K27me3 levels and reactivates silenced PRC2 target genes. GSK126 effectively inhibits the proliferation of EZH2 mutant DLBCL cell lines and markedly inhibits the growth of EZH2 mutant DLBCL xenografts in mice. Together, these data demonstrate that pharmacological inhibition of EZH2 activity may provide a promising treatment for EZH2 mutant lymphoma.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McCabe, Michael T -- Ott, Heidi M -- Ganji, Gopinath -- Korenchuk, Susan -- Thompson, Christine -- Van Aller, Glenn S -- Liu, Yan -- Graves, Alan P -- Della Pietra, Anthony 3rd -- Diaz, Elsie -- LaFrance, Louis V -- Mellinger, Mark -- Duquenne, Celine -- Tian, Xinrong -- Kruger, Ryan G -- McHugh, Charles F -- Brandt, Martin -- Miller, William H -- Dhanak, Dashyant -- Verma, Sharad K -- Tummino, Peter J -- Creasy, Caretha L -- England -- Nature. 2012 Dec 6;492(7427):108-12. doi: 10.1038/nature11606. Epub 2012 Oct 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Epigenetics Discovery Performance Unit, Cancer Research, Oncology R&D, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, Pennsylvania 19426, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23051747" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line, Tumor ; Cell Proliferation/drug effects ; Gene Expression Regulation, Neoplastic/drug effects ; Gene Silencing/drug effects ; Histone-Lysine N-Methyltransferase/antagonists & inhibitors/genetics/metabolism ; Histones/chemistry/metabolism ; Humans ; Indoles/*pharmacology/*therapeutic use ; Lymphoma, Follicular/*drug therapy/enzymology/genetics/pathology ; Lymphoma, Large B-Cell, Diffuse/*drug therapy/enzymology/genetics/pathology ; Methylation/drug effects ; Mice ; Mutation/*genetics ; Neoplasm Transplantation ; Polycomb Repressive Complex 2/*antagonists & inhibitors/genetics/metabolism ; Pyridones/*pharmacology/*therapeutic use ; Repressor Proteins/chemistry/metabolism ; Transcriptional Activation/drug effects ; Transplantation, Heterologous
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1996-11-01
    Description: Tumor necrosis factor alpha (TNF-alpha) signaling gives rise to a number of events, including activation of transcription factor NF-kappaB and programmed cell death (apoptosis). Previous studies of TNF-alpha signaling have suggested that these two events occur independently. The sensitivity and kinetics of TNF-alpha-induced apoptosis are shown to be enhanced in a number of cell types expressing a dominant-negative IkappaBalpha (IkappaBalphaM). These findings suggest that a negative feedback mechanism results from TNF-alpha signaling in which NF-kappaB activation suppresses the signals for cell death.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Van Antwerp, D J -- Martin, S J -- Kafri, T -- Green, D R -- Verma, I M -- GM52735/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Nov 1;274(5288):787-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Genetics, Salk Institute, La Jolla, CA 92037, USA. Jolla Institute for Allergy and Immu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8864120" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Annexin A5/metabolism ; *Apoptosis ; Cells, Cultured ; DNA-Binding Proteins/genetics/physiology ; Feedback ; Humans ; *I-kappa B Proteins ; Jurkat Cells ; Mice ; NF-kappa B/*antagonists & inhibitors/*physiology ; Phosphatidylserines/metabolism ; *Signal Transduction ; Transcription Factor RelA ; Tumor Necrosis Factor-alpha/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1984-08-10
    Description: Transmissible retroviruses encoding human hypoxanthine phosphoribosyltransferase (HPRT) were used to infect mouse bone marrow cells in vitro, and the infected cells were transplanted into mice. Both active human HPRT-protein and chronic HPRT-virus production were detected in hematopoietic tissue of the mice, showing transfer of the gene. These results indicate the possible use of retroviruses for somatic cell therapy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miller, A D -- Eckner, R J -- Jolly, D J -- Friedmann, T -- Verma, I M -- CA 19562/CA/NCI NIH HHS/ -- GM28223/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1984 Aug 10;225(4662):630-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6377498" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone Marrow/microbiology ; Bone Marrow Transplantation ; DNA, Recombinant/metabolism ; Hematopoietic Stem Cells/microbiology ; Humans ; Hypoxanthine Phosphoribosyltransferase/*genetics ; Isoenzymes/metabolism ; Lesch-Nyhan Syndrome/genetics/therapy ; Mice ; Nucleic Acid Hybridization ; Rats ; Retroviridae/enzymology/*genetics ; Spleen/microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1984-09-07
    Description: A growth hormone minigene carrying its natural promoter (237 nucleotides of chromosomal DNA) was stably propagated in a murine retrovirus containing hypoxanthine-guanine phosphoribosyltransferase as a selectable marker. Glucocorticoid and thyroid hormone inducibility was transferred with the growth hormone gene. Recombinant virus with titers of 10(6) per milliliter was recovered. This demonstration that retroviruses can be used to transfer a nonselectable gene under its own regulatory control enlarges the scope of retroviral vectors as potent tools for gene transfer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miller, A D -- Ong, E S -- Rosenfeld, M G -- Verma, I M -- Evans, R M -- New York, N.Y. -- Science. 1984 Sep 7;225(4666):993-8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6089340" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; DNA, Recombinant ; DNA, Viral/analysis ; Dexamethasone/pharmacology ; Gene Expression Regulation ; *Genes ; Genes, Viral ; Genetic Markers ; *Genetic Vectors ; Growth Hormone/biosynthesis/*genetics ; Hypoxanthine Phosphoribosyltransferase/genetics ; Mice ; Operon ; Phenotype ; RNA, Viral/genetics ; Rats ; Retroviridae/*genetics ; Transcription, Genetic ; Transfection ; Triiodothyronine/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...