ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1996-08-16
    Description: Apolipoproteins are protein constituents of plasma lipid transport particles. Human apolipoprotein A-IV (apoA-IV) was expressed in the liver of C57BL/6 mice and mice deficient in apoE, both of which are prone to atherosclerosis, to investigate whether apoA-IV protects against this disease. In transgenic C57BL/6 mice on an atherogenic diet, the serum concentration of high density lipoprotein (HDL) cholesterol increased by 35 percent, whereas the concentration of endogenous apoA-I decreased by 29 percent, relative to those in transgenic mice on a normal diet. Expression of human apoA-IV in apoE-deficient mice on a normal diet resulted in an even more severe atherogenic lipoprotein profile, without affecting the concentration of HDL cholesterol, than that in nontransgenic apoE-deficient mice. However, transgenic mice of both backgrounds showed a substantial reduction in the size of atherosclerotic lesions. Thus, apoA-IV appears to protect against atherosclerosis by a mechanism that does not involve an increase in HDL cholesterol concentration.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Duverger, N -- Tremp, G -- Caillaud, J M -- Emmanuel, F -- Castro, G -- Fruchart, J C -- Steinmetz, A -- Denefle, P -- New York, N.Y. -- Science. 1996 Aug 16;273(5277):966-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Rhone-Poulenc Rorer, Gencell Division, Atherosclerosis Department, Centre de Recherches de Vitry-Alfortville, 94403 Vitry sur Seine Cedex, France. G. C.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8688083" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apolipoprotein A-I/blood ; Apolipoproteins A/blood/*physiology ; Apolipoproteins E/blood/deficiency ; Arteriosclerosis/*prevention & control ; Cholesterol/blood ; Cholesterol, HDL/blood ; Diet, Atherogenic ; Female ; Humans ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-10-03
    Description: The ability of Anopheles gambiae mosquitoes to transmit Plasmodium parasites is highly variable between individuals. However, the genetic basis of this variability has remained unknown. We combined genome-wide mapping and reciprocal allele-specific RNA interference (rasRNAi) to identify the genomic locus that confers resistance to malaria parasites and demonstrated that polymorphisms in a single gene encoding the antiparasitic thioester-containing protein 1 (TEP1) explain a substantial part of the variability in parasite killing. The link between TEP1 alleles and resistance to malaria may offer new tools for controlling malaria transmission. The successful application of rasRNAi in Anopheles suggests that it could also be applied to other organisms where RNAi is feasible to dissect complex phenotypes to the level of individual quantitative trait alleles.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2959166/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2959166/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Blandin, Stephanie A -- Wang-Sattler, Rui -- Lamacchia, Marina -- Gagneur, Julien -- Lycett, Gareth -- Ning, Ye -- Levashina, Elena A -- Steinmetz, Lars M -- R01 GM068717/GM/NIGMS NIH HHS/ -- R01 GM068717-08/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2009 Oct 2;326(5949):147-50. doi: 10.1126/science.1175241.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19797663" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Animals ; Anopheles gambiae/*genetics/immunology/metabolism/*parasitology ; Chromosome Mapping ; *Genes, Insect ; Genome, Insect ; Immunity, Innate ; Insect Proteins/*genetics/*metabolism ; Insect Vectors/genetics/immunology/metabolism/parasitology ; Mice ; Models, Molecular ; Molecular Sequence Data ; Phenotype ; Plasmodium berghei/immunology/*physiology ; *Polymorphism, Genetic ; Quantitative Trait Loci ; RNA Interference
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1983-11-18
    Description: The genes of the major histocompatibility complex code for cell-surface molecules that play an important role in the generation of the immune response. These genes and molecules have been studied intensively over the last five decades by geneticists, biochemists, and immunologists, but only recently has the isolation of the genes by molecular biologists facilitated their precise characterization. Many surprising findings have been made concerning their structure, multiplicity, organization, function, and evolution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Steinmetz, M -- Hood, L -- New York, N.Y. -- Science. 1983 Nov 18;222(4625):727-33.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6356354" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Evolution ; Chromosome Mapping ; Genes ; H-2 Antigens/*genetics ; HLA Antigens/*genetics ; Histocompatibility Antigens/genetics ; Humans ; *Major Histocompatibility Complex ; Mice ; Polymorphism, Genetic ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1982-12-17
    Description: A 3.4-kilobase DNA fragment containing the gene coding for the E alpha chain of an Ia (I region-associated) antigen from the BALB/c mouse has been sequenced. It contains at least three exons, which correlate with the major structural domains of the E alpha chain-the two external domains alpha 1 and alpha 2, and the transmembrane-cytoplasmic domain. The coding sequence of the mouse E alpha gene shows striking homology to its counterpart at the DNA and protein levels. The translated alpha 2 exon demonstrates significant similarity to beta 2-microglobulin, to immunoglobulin constant region domains, and to certain domains of transplantation antigens. These observations and those of others suggest that the Ia antigen, transplantation antigen, and immunoglobulin gene families share a common ancestor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McNicholas, J -- Steinmetz, M -- Hunkapiller, T -- Jones, P -- Hood, L -- New York, N.Y. -- Science. 1982 Dec 17;218(4578):1229-32.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6815800" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Biological Evolution ; Genes ; *Genes, MHC Class II ; Macromolecular Substances ; Mice ; Mice, Inbred BALB C/*genetics ; beta 2-Microglobulin/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-04-08
    Description: A large population of neurons can, in principle, produce an astronomical number of distinct firing patterns. In cortex, however, these patterns lie in a space of lower dimension, as if individual neurons were "obedient members of a huge orchestra". Here we use recordings from the visual cortex of mouse (Mus musculus) and monkey (Macaca mulatta) to investigate the relationship between individual neurons and the population, and to establish the underlying circuit mechanisms. We show that neighbouring neurons can differ in their coupling to the overall firing of the population, ranging from strongly coupled 'choristers' to weakly coupled 'soloists'. Population coupling is largely independent of sensory preferences, and it is a fixed cellular attribute, invariant to stimulus conditions. Neurons with high population coupling are more strongly affected by non-sensory behavioural variables such as motor intention. Population coupling reflects a causal relationship, predicting the response of a neuron to optogenetically driven increases in local activity. Moreover, population coupling indicates synaptic connectivity; the population coupling of a neuron, measured in vivo, predicted subsequent in vitro estimates of the number of synapses received from its neighbours. Finally, population coupling provides a compact summary of population activity; knowledge of the population couplings of n neurons predicts a substantial portion of their n(2) pairwise correlations. Population coupling therefore represents a novel, simple measure that characterizes the relationship of each neuron to a larger population, explaining seemingly complex network firing patterns in terms of basic circuit variables.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4449271/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4449271/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Okun, Michael -- Steinmetz, Nicholas A -- Cossell, Lee -- Iacaruso, M Florencia -- Ko, Ho -- Bartho, Peter -- Moore, Tirin -- Hofer, Sonja B -- Mrsic-Flogel, Thomas D -- Carandini, Matteo -- Harris, Kenneth D -- 095668/Wellcome Trust/United Kingdom -- 095669/Wellcome Trust/United Kingdom -- 095853/Wellcome Trust/United Kingdom -- EY014924/EY/NEI NIH HHS/ -- R01 EY014924/EY/NEI NIH HHS/ -- T32 MH020016/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2015 May 28;521(7553):511-5. doi: 10.1038/nature14273. Epub 2015 Apr 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] UCL Institute of Neurology, University College London, London WC1N 3BG, UK [2] Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6DE, UK [3] UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK. ; 1] UCL Institute of Neurology, University College London, London WC1N 3BG, UK [2] Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6DE, UK [3] UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK [4] Howard Hughes Medical Institute and Department of Neurobiology, Stanford University, Stanford, California 94305-5125, USA. ; 1] Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6DE, UK [2] Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland. ; Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6DE, UK. ; Center for Molecular and Behavioral Neuroscience, Rutgers University, 197 University Avenue, Newark, New Jersey 07102, USA. ; Howard Hughes Medical Institute and Department of Neurobiology, Stanford University, Stanford, California 94305-5125, USA. ; UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK. ; 1] UCL Institute of Neurology, University College London, London WC1N 3BG, UK [2] Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6DE, UK [3] Center for Molecular and Behavioral Neuroscience, Rutgers University, 197 University Avenue, Newark, New Jersey 07102, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25849776" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Female ; Macaca mulatta ; Male ; Mice ; Models, Neurological ; Neurons/*cytology/*physiology ; Optogenetics ; Synapses/physiology ; Visual Cortex/*cytology/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1988-04-08
    Description: The major histocompatibility complex is a chromosomal segment embodying several gene clusters among which those with immune functions are the best characterized. This region is suspected to host other as yet undetected genes whose characterization may shed light on the population genetics and evolution of the whole gene complex and thus on its unexplained character of marker locus for a number of diseases of nonimmune or unknown pathogenesis. A novel gene was identified that is transcribed in all tissues tested and is located in mouse and man between the CA and Bf genes of the H-2 and HLA complexes, respectively. From the nucleotide sequence, derived from liver complementary DNA clones, it is predicted that this novel single-copy gene encodes a 42-kilodalton polypeptide that bears no recognizable relation to the protein families known so far, but it displays striking hallmarks of natural selection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Levi-Strauss, M -- Carroll, M C -- Steinmetz, M -- Meo, T -- New York, N.Y. -- Science. 1988 Apr 8;240(4849):201-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉INSERM U 276, Institut Pasteur, Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3353717" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cloning, Molecular ; Genes ; Liver/physiology ; *Major Histocompatibility Complex ; Mice ; Molecular Sequence Data ; Periodicity ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...