ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1997-09-05
    Description: In response to DNA damage, mammalian cells prevent cell cycle progression through the control of critical cell cycle regulators. A human gene was identified that encodes the protein Chk1, a homolog of the Schizosaccharomyces pombe Chk1 protein kinase, which is required for the DNA damage checkpoint. Human Chk1 protein was modified in response to DNA damage. In vitro Chk1 bound to and phosphorylated the dual-specificity protein phosphatases Cdc25A, Cdc25B, and Cdc25C, which control cell cycle transitions by dephosphorylating cyclin-dependent kinases. Chk1 phosphorylates Cdc25C on serine-216. As shown in an accompanying paper by Peng et al. in this issue, serine-216 phosphorylation creates a binding site for 14-3-3 protein and inhibits function of the phosphatase. These results suggest a model whereby in response to DNA damage, Chk1 phosphorylates and inhibits Cdc25C, thus preventing activation of the Cdc2-cyclin B complex and mitotic entry.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sanchez, Y -- Wong, C -- Thoma, R S -- Richman, R -- Wu, Z -- Piwnica-Worms, H -- Elledge, S J -- GM17763/GM/NIGMS NIH HHS/ -- GM44664/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 Sep 5;277(5331):1497-501.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Verna and Marrs McLean Department of Biochemistry, Howard Hughes Medical Institute, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9278511" target="_blank"〉PubMed〈/a〉
    Keywords: 14-3-3 Proteins ; Amino Acid Sequence ; Animals ; CDC2 Protein Kinase/*metabolism ; Cell Cycle Proteins/antagonists & inhibitors/*metabolism ; Chromosome Mapping ; Chromosomes, Human, Pair 11 ; Cytoskeletal Proteins ; *DNA Damage ; *F-Box Proteins ; G2 Phase ; HeLa Cells ; Humans ; Mice ; *Mitosis ; Molecular Sequence Data ; Phosphoprotein Phosphatases/metabolism ; Phosphorylation ; Phosphoserine/metabolism ; Protein Kinases/chemistry/genetics/*metabolism ; Protein Tyrosine Phosphatases/metabolism ; Proteins/metabolism ; Recombinant Fusion Proteins/metabolism ; Schizosaccharomyces pombe Proteins ; Signal Transduction ; Transfection ; *Tyrosine 3-Monooxygenase ; *Ubiquitin-Protein Ligases ; *cdc25 Phosphatases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-11-26
    Description: Tumorigenesis is a multistep process that results from the sequential accumulation of mutations in key oncogene and tumour suppressor pathways. Personalized cancer therapy that is based on targeting these underlying genetic abnormalities presupposes that sustained inactivation of tumour suppressors and activation of oncogenes is essential in advanced cancers. Mutations in the p53 tumour-suppressor pathway are common in human cancer and significant efforts towards pharmaceutical reactivation of defective p53 pathways are underway. Here we show that restoration of p53 in established murine lung tumours leads to significant but incomplete tumour cell loss specifically in malignant adenocarcinomas, but not in adenomas. We define amplification of MAPK signalling as a critical determinant of malignant progression and also a stimulator of Arf tumour-suppressor expression. The response to p53 restoration in this context is critically dependent on the expression of Arf. We propose that p53 not only limits malignant progression by suppressing the acquisition of alterations that lead to tumour progression, but also, in the context of p53 restoration, responds to increased oncogenic signalling to mediate tumour regression. Our observations also underscore that the p53 pathway is not engaged by low levels of oncogene activity that are sufficient for early stages of lung tumour development. These data suggest that restoration of pathways important in tumour progression, as opposed to initiation, may lead to incomplete tumour regression due to the stage-heterogeneity of tumour cell populations.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3003305/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3003305/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Feldser, David M -- Kostova, Kamena K -- Winslow, Monte M -- Taylor, Sarah E -- Cashman, Chris -- Whittaker, Charles A -- Sanchez-Rivera, Francisco J -- Resnick, Rebecca -- Bronson, Roderick -- Hemann, Michael T -- Jacks, Tyler -- P30 CA014051/CA/NCI NIH HHS/ -- P30 CA014051-37/CA/NCI NIH HHS/ -- P30 CA014051-38/CA/NCI NIH HHS/ -- P30 CA014051-39/CA/NCI NIH HHS/ -- P30 CA014051-40/CA/NCI NIH HHS/ -- P30-CA14051/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Nov 25;468(7323):572-5. doi: 10.1038/nature09535.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Koch Institute for Integrative Cancer Research, Department of Biology, and Howard Hughes Medical Institute, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21107428" target="_blank"〉PubMed〈/a〉
    Keywords: Adenocarcinoma/metabolism/*physiopathology ; Adenoma/metabolism/*physiopathology ; Animals ; Cell Proliferation ; *Disease Progression ; Lung Neoplasms/*physiopathology ; Mice ; Mice, Inbred C57BL ; Mitogen-Activated Protein Kinases/metabolism ; Signal Transduction ; Tumor Suppressor Protein p53/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-11-12
    Description: Parkinson's disease is a pervasive, ageing-related neurodegenerative disease the cardinal motor symptoms of which reflect the loss of a small group of neurons, the dopaminergic neurons in the substantia nigra pars compacta (SNc). Mitochondrial oxidant stress is widely viewed as being responsible for this loss, but why these particular neurons should be stressed is a mystery. Here we show, using transgenic mice that expressed a redox-sensitive variant of green fluorescent protein targeted to the mitochondrial matrix, that the engagement of plasma membrane L-type calcium channels during normal autonomous pacemaking created an oxidant stress that was specific to vulnerable SNc dopaminergic neurons. The oxidant stress engaged defences that induced transient, mild mitochondrial depolarization or uncoupling. The mild uncoupling was not affected by deletion of cyclophilin D, which is a component of the permeability transition pore, but was attenuated by genipin and purine nucleotides, which are antagonists of cloned uncoupling proteins. Knocking out DJ-1 (also known as PARK7 in humans and Park7 in mice), which is a gene associated with an early-onset form of Parkinson's disease, downregulated the expression of two uncoupling proteins (UCP4 (SLC25A27) and UCP5 (SLC25A14)), compromised calcium-induced uncoupling and increased oxidation of matrix proteins specifically in SNc dopaminergic neurons. Because drugs approved for human use can antagonize calcium entry through L-type channels, these results point to a novel neuroprotective strategy for both idiopathic and familial forms of Parkinson's disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4465557/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4465557/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guzman, Jaime N -- Sanchez-Padilla, Javier -- Wokosin, David -- Kondapalli, Jyothisri -- Ilijic, Ema -- Schumacker, Paul T -- Surmeier, D James -- HL35440/HL/NHLBI NIH HHS/ -- K12GM088020/GM/NIGMS NIH HHS/ -- NS 054850/NS/NINDS NIH HHS/ -- NS047085/NS/NINDS NIH HHS/ -- P30 NS054850/NS/NINDS NIH HHS/ -- P50 NS047085/NS/NINDS NIH HHS/ -- R01 HL035440/HL/NHLBI NIH HHS/ -- R21 RR025355/RR/NCRR NIH HHS/ -- RR025355/RR/NCRR NIH HHS/ -- England -- Nature. 2010 Dec 2;468(7324):696-700. doi: 10.1038/nature09536. Epub 2010 Nov 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21068725" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Clocks/*physiology ; Brain/cytology/metabolism ; Calcium/metabolism ; Calcium Channel Blockers/pharmacology ; Calcium Channels, L-Type/metabolism/pharmacology ; Calcium Signaling ; Cyclophilins/metabolism ; Dihydropyridines/pharmacology ; Dopamine/*metabolism ; Gene Deletion ; Ion Channels/antagonists & inhibitors/metabolism ; Iridoid Glycosides/pharmacology ; Iridoids ; Male ; Mice ; Mice, Transgenic ; Mitochondria/metabolism ; Mitochondrial Proteins/antagonists & inhibitors/metabolism ; Neurons/cytology/*metabolism ; Oncogene Proteins/deficiency/genetics/*metabolism ; *Oxidative Stress ; Parkinson Disease/metabolism/pathology/prevention & control ; Peroxiredoxins ; Purines/pharmacology ; Superoxides/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-04-20
    Description: Bacterial lipopolysaccharide (LPS) exerts profound effects on mammalian hosts in part by inducing macrophages to release tumor necrosis factor-alpha (TNF-alpha); the mechanisms involved are unresolved. The microtubule stabilizer taxol shared two actions of LPS on macrophages: it rapidly decreased TNF-alpha receptors and triggered TNF-alpha release. Both actions of taxol were absent in LPS-hyporesponsive C3H/HeJ mice. In recombinant inbred mice, the genes controlling responses to LPS and to taxol were closely linked. Dexamethasone blocked release of TNF-alpha by both stimuli but did not block the decrease in TNF-alpha receptors. Thus, a protein associated with microtubules may be a cellular target of LPS.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ding, A H -- Porteu, F -- Sanchez, E -- Nathan, C F -- CA-43610/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1990 Apr 20;248(4953):370-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Cornell University Medical College, New York, NY 10021.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1970196" target="_blank"〉PubMed〈/a〉
    Keywords: Alkaloids/*pharmacology ; Animals ; Crosses, Genetic ; Dexamethasone/pharmacology ; Lipopolysaccharides/*pharmacology ; Macrophages/*drug effects/metabolism ; Mice ; Mice, Inbred C3H ; Mice, Inbred C57BL ; Mice, Mutant Strains ; Paclitaxel ; Receptors, Cell Surface/*drug effects/metabolism ; Receptors, Tumor Necrosis Factor ; Tumor Necrosis Factor-alpha/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-01-31
    Description: Neuronal death is a prominent, but poorly understood, pathological hallmark of prion disease. Notably, in the absence of the cellular prion protein (PrPC), the disease-associated isoform, PrPSc, appears not to be intrinsically neurotoxic, suggesting that PrPC itself may participate directly in the prion neurodegenerative cascade. Here, cross-linking PrPC in vivo with specific monoclonal antibodies was found to trigger rapid and extensive apoptosis in hippocampal and cerebellar neurons. These findings suggest that PrPC functions in the control of neuronal survival and provides a model to explore whether cross-linking of PrPC by oligomeric PrPSc can promote neuronal loss during prion infection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Solforosi, Laura -- Criado, Jose R -- McGavern, Dorian B -- Wirz, Sebastian -- Sanchez-Alavez, Manuel -- Sugama, Shuei -- DeGiorgio, Lorraine A -- Volpe, Bruce T -- Wiseman, Erika -- Abalos, Gil -- Masliah, Eliezer -- Gilden, Donald -- Oldstone, Michael B -- Conti, Bruno -- Williamson, R Anthony -- AG00080/AG/NIA NIH HHS/ -- AG04342/AG/NIA NIH HHS/ -- AI09484/AI/NIAID NIH HHS/ -- HL63817/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2004 Mar 5;303(5663):1514-6. Epub 2004 Jan 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14752167" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Monoclonal/immunology/*metabolism ; *Apoptosis ; Cell Survival ; Cerebellum/*cytology ; Complement Activation ; Dimerization ; Hippocampus/*cytology ; Immunoglobulin Fab Fragments/immunology/metabolism ; Immunoglobulin G/immunology/metabolism ; In Situ Nick-End Labeling ; Mice ; Mice, Inbred C57BL ; Neural Cell Adhesion Molecules/immunology/metabolism ; Neurons/*physiology ; PrPC Proteins/chemistry/immunology/*metabolism ; Recombinant Proteins/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2005-10-08
    Description: To investigate the role of astrocytes in regulating synaptic transmission, we generated inducible transgenic mice that express a dominant-negative SNARE domain selectively in astrocytes to block the release of transmitters from these glial cells. By releasing adenosine triphosphate, which accumulates as adenosine, astrocytes tonically suppressed synaptic transmission, thereby enhancing the dynamic range for long-term potentiation and mediated activity-dependent, heterosynaptic depression. These results indicate that astrocytes are intricately linked in the regulation of synaptic strength and plasticity and provide a pathway for synaptic cross-talk.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pascual, Olivier -- Casper, Kristen B -- Kubera, Cathryn -- Zhang, Jing -- Revilla-Sanchez, Raquel -- Sul, Jai-Yoon -- Takano, Hajime -- Moss, Stephen J -- McCarthy, Ken -- Haydon, Philip G -- New York, N.Y. -- Science. 2005 Oct 7;310(5745):113-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Conte Center for Integration at the Tripartite Synapse, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16210541" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine/*metabolism ; Adenosine A1 Receptor Antagonists ; Adenosine Triphosphatases/antagonists & inhibitors ; Adenosine Triphosphate/analogs & derivatives/metabolism/pharmacology ; Animals ; Astrocytes/drug effects/*physiology ; Cells, Cultured ; Excitatory Postsynaptic Potentials ; Hippocampus/drug effects/physiology ; In Vitro Techniques ; Long-Term Potentiation/drug effects ; Mice ; Mice, Transgenic ; Neuronal Plasticity/drug effects ; Purinergic P1 Receptor Antagonists ; Purinergic P2 Receptor Antagonists ; Receptor, Adenosine A1/metabolism ; Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors/metabolism ; Receptors, Purinergic P1/metabolism ; Receptors, Purinergic P2/metabolism ; Synapses/*physiology ; *Synaptic Transmission/drug effects ; Xanthines/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-06-19
    Description: Mus81-Eme1 endonuclease has been implicated in the rescue of stalled replication forks and the resolution of meiotic recombination intermediates in yeast. We used gene targeting to study the physiological requirements of Mus81 in mammals. Mus81-/- mice are viable and fertile, which indicates that mammalian Mus81 is not essential for recombination processes associated with meiosis. Mus81-deficient mice and cells were hypersensitive to the DNA cross-linking agent mitomycin C but not to gamma-irradiation. Remarkably, both homozygous Mus81-/- and heterozygous Mus81+/- mice exhibited a similar susceptibility to spontaneous chromosomal damage and a profound and equivalent predisposition to lymphomas and other cancers. These studies demonstrate a critical role for the proper biallelic expression of the mammalian Mus81 in the maintenance of genomic integrity and tumor suppression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McPherson, John Peter -- Lemmers, Benedicte -- Chahwan, Richard -- Pamidi, Ashwin -- Migon, Eva -- Matysiak-Zablocki, Elzbieta -- Moynahan, Mary Ellen -- Essers, Jeroen -- Hanada, Katsuhiro -- Poonepalli, Anuradha -- Sanchez-Sweatman, Otto -- Khokha, Rama -- Kanaar, Roland -- Jasin, Maria -- Hande, M Prakash -- Hakem, Razqallah -- New York, N.Y. -- Science. 2004 Jun 18;304(5678):1822-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ontario Cancer Institute, 620 University Avenue, Suite 706, Toronto, Ontario, Canada M5G 2C1.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15205536" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Chromosome Aberrations ; DNA Damage ; DNA-Binding Proteins/*genetics/*physiology ; Embryo, Mammalian/cytology ; Embryonic and Fetal Development ; *Endonucleases ; Gamma Rays ; Gene Targeting ; Genetic Predisposition to Disease ; *Genome ; *Genomic Instability ; Heterozygote ; Lymphoma/etiology/genetics/pathology ; Meiosis ; Mice ; Mitomycin/pharmacology ; Neoplasms/etiology/*genetics ; Recombination, Genetic ; Saccharomyces cerevisiae Proteins ; Sister Chromatid Exchange ; Stem Cells ; T-Lymphocytes/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-06-12
    Description: Cutaneous melanoma is epidemiologically linked to ultraviolet radiation (UVR), but the molecular mechanisms by which UVR drives melanomagenesis remain unclear. The most common somatic mutation in melanoma is a V600E substitution in BRAF, which is an early event. To investigate how UVR accelerates oncogenic BRAF-driven melanomagenesis, we used a BRAF(V600E) mouse model. In mice expressing BRAF(V600E) in their melanocytes, a single dose of UVR that mimicked mild sunburn in humans induced clonal expansion of the melanocytes, and repeated doses of UVR increased melanoma burden. Here we show that sunscreen (UVA superior, UVB sun protection factor (SPF) 50) delayed the onset of UVR-driven melanoma, but only provided partial protection. The UVR-exposed tumours showed increased numbers of single nucleotide variants and we observed mutations (H39Y, S124F, R245C, R270C, C272G) in the Trp53 tumour suppressor in approximately 40% of cases. TP53 is an accepted UVR target in human non-melanoma skin cancer, but is not thought to have a major role in melanoma. However, we show that, in mice, mutant Trp53 accelerated BRAF(V600E)-driven melanomagenesis, and that TP53 mutations are linked to evidence of UVR-induced DNA damage in human melanoma. Thus, we provide mechanistic insight into epidemiological data linking UVR to acquired naevi in humans. Furthermore, we identify TP53/Trp53 as a UVR-target gene that cooperates with BRAF(V600E) to induce melanoma, providing molecular insight into how UVR accelerates melanomagenesis. Our study validates public health campaigns that promote sunscreen protection for individuals at risk of melanoma.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4112218/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4112218/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Viros, Amaya -- Sanchez-Laorden, Berta -- Pedersen, Malin -- Furney, Simon J -- Rae, Joel -- Hogan, Kate -- Ejiama, Sarah -- Girotti, Maria Romina -- Cook, Martin -- Dhomen, Nathalie -- Marais, Richard -- A12738/Cancer Research UK/United Kingdom -- A13540/Cancer Research UK/United Kingdom -- A17240/Cancer Research UK/United Kingdom -- A7091/Cancer Research UK/United Kingdom -- A7192/Cancer Research UK/United Kingdom -- C107/A10433/Cancer Research UK/United Kingdom -- C5759/A12328/Cancer Research UK/United Kingdom -- England -- Nature. 2014 Jul 24;511(7510):478-82. doi: 10.1038/nature13298. Epub 2014 Jun 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Molecular Oncology Group, Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK [2]. ; 1] Signal Transduction Team, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK [2]. ; Signal Transduction Team, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK. ; Molecular Oncology Group, Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK. ; 1] Molecular Oncology Group, Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK [2] Histopathology, Royal Surrey County Hospital, Egerton Road, Guildford GU2 7XX, UK. ; 1] Molecular Oncology Group, Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK [2] Signal Transduction Team, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24919155" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cell Transformation, Neoplastic/*genetics/*radiation effects ; DNA Damage/genetics ; Disease Models, Animal ; Female ; Humans ; Melanocytes/metabolism/pathology/radiation effects ; Melanoma/etiology/*genetics/metabolism/*pathology ; Mice ; Mice, Inbred C57BL ; Mutagenesis/genetics/*radiation effects ; Mutation/genetics/radiation effects ; Nevus/etiology/genetics/metabolism/pathology ; Proto-Oncogene Proteins B-raf/*genetics/metabolism ; Skin Neoplasms/etiology/genetics/metabolism/pathology ; Sunburn/complications/etiology/genetics ; Sunscreening Agents/pharmacology ; Tumor Suppressor Protein p53/*genetics/metabolism ; Ultraviolet Rays/*adverse effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-10-23
    Description: Cancer is a multistep process that involves mutations and other alterations in oncogenes and tumour suppressor genes. Genome sequencing studies have identified a large collection of genetic alterations that occur in human cancers. However, the determination of which mutations are causally related to tumorigenesis remains a major challenge. Here we describe a novel CRISPR/Cas9-based approach for rapid functional investigation of candidate genes in well-established autochthonous mouse models of cancer. Using a Kras(G12D)-driven lung cancer model, we performed functional characterization of a panel of tumour suppressor genes with known loss-of-function alterations in human lung cancer. Cre-dependent somatic activation of oncogenic Kras(G12D) combined with CRISPR/Cas9-mediated genome editing of tumour suppressor genes resulted in lung adenocarcinomas with distinct histopathological and molecular features. This rapid somatic genome engineering approach enables functional characterization of putative cancer genes in the lung and other tissues using autochthonous mouse models. We anticipate that this approach can be used to systematically dissect the complex catalogue of mutations identified in cancer genome sequencing studies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4292871/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4292871/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sanchez-Rivera, Francisco J -- Papagiannakopoulos, Thales -- Romero, Rodrigo -- Tammela, Tuomas -- Bauer, Matthew R -- Bhutkar, Arjun -- Joshi, Nikhil S -- Subbaraj, Lakshmipriya -- Bronson, Roderick T -- Xue, Wen -- Jacks, Tyler -- K99 CA169512/CA/NCI NIH HHS/ -- P30 CA014051/CA/NCI NIH HHS/ -- P30-CA14051/CA/NCI NIH HHS/ -- R00 CA169512/CA/NCI NIH HHS/ -- T32 GM007287/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Dec 18;516(7531):428-31. doi: 10.1038/nature13906. Epub 2014 Oct 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA [2] Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA. ; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA. ; 1] Tufts University, Boston, Massachusetts 02115, USA [2] Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA [2] Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA [3] Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25337879" target="_blank"〉PubMed〈/a〉
    Keywords: Adenocarcinoma/*genetics/pathology ; Animals ; *Caspase 9 ; *Clustered Regularly Interspaced Short Palindromic Repeats ; Disease Models, Animal ; Genes, Tumor Suppressor ; *Genetic Engineering ; Genome/*genetics ; Humans ; Lentivirus/genetics ; Lung Neoplasms/*genetics/pathology ; Mice ; Mice, Inbred C57BL ; Models, Genetic ; Mutation/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-08-15
    Description: Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers in western countries, with a median survival of 6 months and an extremely low percentage of long-term surviving patients. KRAS mutations are known to be a driver event of PDAC, but targeting mutant KRAS has proved challenging. Targeting oncogene-driven signalling pathways is a clinically validated approach for several devastating diseases. Still, despite marked tumour shrinkage, the frequency of relapse indicates that a fraction of tumour cells survives shut down of oncogenic signalling. Here we explore the role of mutant KRAS in PDAC maintenance using a recently developed inducible mouse model of mutated Kras (Kras(G12D), herein KRas) in a p53(LoxP/WT) background. We demonstrate that a subpopulation of dormant tumour cells surviving oncogene ablation (surviving cells) and responsible for tumour relapse has features of cancer stem cells and relies on oxidative phosphorylation for survival. Transcriptomic and metabolic analyses of surviving cells reveal prominent expression of genes governing mitochondrial function, autophagy and lysosome activity, as well as a strong reliance on mitochondrial respiration and a decreased dependence on glycolysis for cellular energetics. Accordingly, surviving cells show high sensitivity to oxidative phosphorylation inhibitors, which can inhibit tumour recurrence. Our integrated analyses illuminate a therapeutic strategy of combined targeting of the KRAS pathway and mitochondrial respiration to manage pancreatic cancer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4376130/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4376130/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Viale, Andrea -- Pettazzoni, Piergiorgio -- Lyssiotis, Costas A -- Ying, Haoqiang -- Sanchez, Nora -- Marchesini, Matteo -- Carugo, Alessandro -- Green, Tessa -- Seth, Sahil -- Giuliani, Virginia -- Kost-Alimova, Maria -- Muller, Florian -- Colla, Simona -- Nezi, Luigi -- Genovese, Giannicola -- Deem, Angela K -- Kapoor, Avnish -- Yao, Wantong -- Brunetto, Emanuela -- Kang, Ya'an -- Yuan, Min -- Asara, John M -- Wang, Y Alan -- Heffernan, Timothy P -- Kimmelman, Alec C -- Wang, Huamin -- Fleming, Jason B -- Cantley, Lewis C -- DePinho, Ronald A -- Draetta, Giulio F -- CA016672/CA/NCI NIH HHS/ -- CA16672/CA/NCI NIH HHS/ -- P01 CA117969/CA/NCI NIH HHS/ -- P01 CA120964/CA/NCI NIH HHS/ -- P01CA117969/CA/NCI NIH HHS/ -- P01CA120964/CA/NCI NIH HHS/ -- P30 CA016672/CA/NCI NIH HHS/ -- P30CA16672/CA/NCI NIH HHS/ -- P50 CA127003/CA/NCI NIH HHS/ -- England -- Nature. 2014 Oct 30;514(7524):628-32. doi: 10.1038/nature13611. Epub 2014 Aug 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [2] Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [3]. ; Department of Medicine, Weill Cornell Medical College, New York, New York 10065, USA. ; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. ; 1] Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [2] Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. ; 1] Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [2] Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [3] Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy. ; Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. ; Pathology Unit, San Raffaele Scientific Institute, Milan 20132, Italy. ; Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. ; Department of Medicine, Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, USA. ; Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA. ; Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. ; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25119024" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autophagy ; Carcinoma, Pancreatic Ductal/drug therapy/genetics/*metabolism/*pathology ; Cell Respiration/drug effects ; Cell Survival/drug effects ; Disease Models, Animal ; Female ; Gene Expression Regulation, Neoplastic ; Genes, p53/genetics ; Glycolysis ; Lysosomes/metabolism ; Mice ; Mitochondria/drug effects/*metabolism ; Mutation/genetics ; Neoplasm Recurrence, Local/prevention & control ; Neoplastic Stem Cells/drug effects/metabolism/pathology ; Oxidative Phosphorylation/drug effects ; Pancreatic Neoplasms/drug therapy/genetics/*metabolism/*pathology ; Proto-Oncogene Proteins p21(ras)/*genetics/metabolism ; Recurrence ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...