ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1999-12-03
    Description: Osteoporosis and other diseases of bone loss are a major public health problem. Here it is shown that the statins, drugs widely used for lowering serum cholesterol, also enhance new bone formation in vitro and in rodents. This effect was associated with increased expression of the bone morphogenetic protein-2 (BMP-2) gene in bone cells. Lovastatin and simvastatin increased bone formation when injected subcutaneously over the calvaria of mice and increased cancellous bone volume when orally administered to rats. Thus, in appropriate doses, statins may have therapeutic applications for the treatment of osteoporosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mundy, G -- Garrett, R -- Harris, S -- Chan, J -- Chen, D -- Rossini, G -- Boyce, B -- Zhao, M -- Gutierrez, G -- New York, N.Y. -- Science. 1999 Dec 3;286(5446):1946-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉OsteoScreen, 2040 Babcock Road, San Antonio, TX 78229, USA. mundy@uthscsa.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10583956" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone Density/*drug effects ; Bone Morphogenetic Protein 2 ; Bone Morphogenetic Proteins/biosynthesis/genetics/pharmacology ; Cell Line ; Female ; Fibroblast Growth Factor 1 ; Fibroblast Growth Factor 2/pharmacology ; Humans ; Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology ; Lovastatin/*pharmacology ; Male ; Mice ; Mice, Inbred ICR ; Organ Culture Techniques ; Osteoblasts/*drug effects/metabolism ; Osteoclasts/drug effects ; Osteogenesis/*drug effects ; Osteoporosis/drug therapy ; Ovariectomy ; Promoter Regions, Genetic/drug effects ; Rats ; Recombinant Proteins/pharmacology ; Simvastatin/*pharmacology ; Skull ; Transfection ; *Transforming Growth Factor beta
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2003-12-13
    Description: The production of nitric oxide and other reactive nitrogen intermediates (RNI) by macrophages helps to control infection by Mycobacterium tuberculosis (Mtb). However, the protection is imperfect and infection persists. To identify genes that Mtb requires to resist RNI, we screened 10,100 Mtb transposon mutants for hypersusceptibility to acidified nitrite. We found 12 mutants with insertions in seven genes representing six pathways, including the repair of DNA (uvrB) and the synthesis of a flavin cofactor (fbiC). Five mutants had insertions in proteasome-associated genes. An Mtb mutant deficient in a presumptive proteasomal adenosine triphosphatase was attenuated in mice, and exposure to proteasomal protease inhibitors markedly sensitized wild-type Mtb to RNI. Thus, the mycobacterial proteasome serves as a defense against oxidative or nitrosative stress.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Darwin, K Heran -- Ehrt, Sabine -- Gutierrez-Ramos, Jose-Carlos -- Weich, Nadine -- Nathan, Carl F -- AI055549/AI/NIAID NIH HHS/ -- HL61241/HL/NHLBI NIH HHS/ -- T32 AI07621/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2003 Dec 12;302(5652):1963-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14671303" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/antagonists & inhibitors/genetics/*metabolism ; Animals ; Antitubercular Agents/pharmacology ; Bacterial Proteins/genetics/metabolism ; Carrier Proteins/antagonists & inhibitors/genetics/*metabolism ; Colony Count, Microbial ; Cysteine Endopeptidases/genetics/*metabolism ; DNA Transposable Elements ; Genes, Bacterial ; Genetic Complementation Test ; Hydrogen Peroxide/pharmacology ; Hydrogen-Ion Concentration ; Macrophages/*microbiology ; Mice ; Mice, Inbred C57BL ; Microbial Sensitivity Tests ; Multienzyme Complexes/genetics/*metabolism ; Mutation ; Mycobacterium tuberculosis/drug effects/genetics/metabolism/*pathogenicity ; Nitric Oxide/*metabolism/*pharmacology ; Nitric Oxide Synthase/genetics/metabolism ; Nitric Oxide Synthase Type II ; Nitrites/pharmacology ; Oxidative Stress ; Protease Inhibitors/pharmacology ; Proteasome Endopeptidase Complex ; Tuberculosis/microbiology ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2003-10-04
    Description: Abnormally high spiking activity can damage neurons. Signaling systems to protect neurons from the consequences of abnormal discharge activity have been postulated. We generated conditional mutant mice that lack expression of the cannabinoid receptor type 1 in principal forebrain neurons but not in adjacent inhibitory interneurons. In mutant mice,the excitotoxin kainic acid (KA) induced excessive seizures in vivo. The threshold to KA-induced neuronal excitation in vitro was severely reduced in hippocampal pyramidal neurons of mutants. KA administration rapidly raised hippocampal levels of anandamide and induced protective mechanisms in wild-type principal hippocampal neurons. These protective mechanisms could not be triggered in mutant mice. The endogenous cannabinoid system thus provides on-demand protection against acute excitotoxicity in central nervous system neurons.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marsicano, Giovanni -- Goodenough, Sharon -- Monory, Krisztina -- Hermann, Heike -- Eder, Matthias -- Cannich, Astrid -- Azad, Shahnaz C -- Cascio, Maria Grazia -- Gutierrez, Silvia Ortega -- van der Stelt, Mario -- Lopez-Rodriguez, Maria Luz -- Casanova, Emilio -- Schutz, Gunther -- Zieglgansberger, Walter -- Di Marzo, Vincenzo -- Behl, Christian -- Lutz, Beat -- New York, N.Y. -- Science. 2003 Oct 3;302(5642):84-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Genetics of Behaviour, Max-Planck-Institute of Psychiatry, Kraepelinstrabetae 2-10, 80804 Munich, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14526074" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arachidonic Acids/*metabolism/pharmacology ; Brain/drug effects/*metabolism ; Brain-Derived Neurotrophic Factor/genetics/metabolism ; Cannabinoids/*metabolism ; Endocannabinoids ; Epilepsy/*metabolism/physiopathology ; Excitatory Amino Acid Agonists/pharmacology ; Excitatory Postsynaptic Potentials ; Furans/pharmacology ; Gene Expression Regulation/drug effects ; Genes, Immediate-Early ; Glutamic Acid/metabolism ; Glycerides/metabolism ; Hippocampus/drug effects/metabolism ; In Vitro Techniques ; Kainic Acid/pharmacology ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mice, Transgenic ; Mitogen-Activated Protein Kinases/metabolism ; Mutation ; Neurons/drug effects/*metabolism/physiology ; Neuroprotective Agents/metabolism ; Piperidines/pharmacology ; Polyunsaturated Alkamides ; Prosencephalon/drug effects/metabolism ; Pyrazoles/pharmacology ; Receptors, Cannabinoid ; Receptors, Drug/antagonists & inhibitors/genetics/*metabolism ; Signal Transduction ; gamma-Aminobutyric Acid/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2005-01-18
    Description: In mammals, hair cell loss causes irreversible hearing and balance impairment because hair cells are terminally differentiated and do not regenerate spontaneously. By profiling gene expression in developing mouse vestibular organs, we identified the retinoblastoma protein (pRb) as a candidate regulator of cell cycle exit in hair cells. Differentiated and functional mouse hair cells with a targeted deletion of Rb1 undergo mitosis, divide, and cycle, yet continue to become highly differentiated and functional. Moreover, acute loss of Rb1 in postnatal hair cells caused cell cycle reentry. Manipulation of the pRb pathway may ultimately lead to mammalian hair cell regeneration.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sage, Cyrille -- Huang, Mingqian -- Karimi, Kambiz -- Gutierrez, Gabriel -- Vollrath, Melissa A -- Zhang, Duan-Sun -- Garcia-Anoveros, Jaime -- Hinds, Philip W -- Corwin, Jeffrey T -- Corey, David P -- Chen, Zheng-Yi -- DC-00200/DC/NIDCD NIH HHS/ -- DC-04546/DC/NIDCD NIH HHS/ -- DC-AG20208/DC/NIDCD NIH HHS/ -- New York, N.Y. -- Science. 2005 Feb 18;307(5712):1114-8. Epub 2005 Jan 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Neurology Service, MGH-HMS Center for Nervous System Repair, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15653467" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Cell Count ; Cell Cycle ; Cell Differentiation ; *Cell Proliferation ; Cell Shape ; Cochlea/cytology/embryology ; Female ; Gene Deletion ; Gene Expression Profiling ; Genes, Retinoblastoma ; Hair Cells, Auditory, Inner/*cytology/*physiology ; Mice ; Mice, Knockout ; Mitosis ; Oligonucleotide Array Sequence Analysis ; Pregnancy ; Pyridinium Compounds/metabolism ; Quaternary Ammonium Compounds/metabolism ; Regeneration ; Retinoblastoma Protein/genetics/*physiology ; Saccule and Utricle/embryology/metabolism ; Stem Cells/cytology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2002-11-16
    Description: Recently, we showed that antibodies catalyze the generation of hydrogen peroxide (H2O2) from singlet molecular oxygen (1O2*) and water. Here, we show that this process can lead to efficient killing of bacteria, regardless of the antigen specificity of the antibody. H2O2 production by antibodies alone was found to be not sufficient for bacterial killing. Our studies suggested that the antibody-catalyzed water-oxidation pathway produced an additional molecular species with a chemical signature similar to that of ozone. This species is also generated during the oxidative burst of activated human neutrophils and during inflammation. These observations suggest that alternative pathways may exist for biological killing of bacteria that are mediated by potent oxidants previously unknown to biology.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wentworth, Paul Jr -- McDunn, Jonathan E -- Wentworth, Anita D -- Takeuchi, Cindy -- Nieva, Jorge -- Jones, Teresa -- Bautista, Cristina -- Ruedi, Julie M -- Gutierrez, Abel -- Janda, Kim D -- Babior, Bernard M -- Eschenmoser, Albert -- Lerner, Richard A -- 5T32AI07606/AI/NIAID NIH HHS/ -- GM43858/GM/NIGMS NIH HHS/ -- P01CA27489/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2002 Dec 13;298(5601):2195-9. Epub 2002 Nov 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12434011" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Catalytic/immunology/*metabolism ; Arthus Reaction/*immunology/metabolism ; Blood Bactericidal Activity ; Catalase/metabolism ; Catalysis ; Escherichia coli/*immunology ; Hematoporphyrins/metabolism ; Humans ; Hydrogen Peroxide/metabolism ; Indigo Carmine/metabolism ; Inflammation/*immunology/metabolism ; Mice ; Neutrophil Activation ; Neutrophils/immunology/*metabolism ; Oxidation-Reduction ; Ozone/*metabolism ; Rabbits ; Rats ; Rats, Sprague-Dawley ; Respiratory Burst ; Singlet Oxygen/metabolism ; Ultraviolet Rays ; Water/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-03-04
    Description: The effective use of targeted therapy is highly dependent on the identification of responder patient populations. Loss of FBW7, which encodes a tumour-suppressor protein, is frequently found in various types of human cancer, including breast cancer, colon cancer and T-cell acute lymphoblastic leukaemia (T-ALL). In line with these genomic data, engineered deletion of Fbw7 in mouse T cells results in T-ALL, validating FBW7 as a T-ALL tumour suppressor. Determining the precise molecular mechanisms by which FBW7 exerts antitumour activity is an area of intensive investigation. These mechanisms are thought to relate in part to FBW7-mediated destruction of key proteins relevant to cancer, including Jun, Myc, cyclin E and notch 1 (ref. 9), all of which have oncoprotein activity and are overexpressed in various human cancers, including leukaemia. In addition to accelerating cell growth, overexpression of Jun, Myc or notch 1 can also induce programmed cell death. Thus, considerable uncertainty surrounds how FBW7-deficient cells evade cell death in the setting of upregulated Jun, Myc and/or notch 1. Here we show that the E3 ubiquitin ligase SCF(FBW7) (a SKP1-cullin-1-F-box complex that contains FBW7 as the F-box protein) governs cellular apoptosis by targeting MCL1, a pro-survival BCL2 family member, for ubiquitylation and destruction in a manner that depends on phosphorylation by glycogen synthase kinase 3. Human T-ALL cell lines showed a close relationship between FBW7 loss and MCL1 overexpression. Correspondingly, T-ALL cell lines with defective FBW7 are particularly sensitive to the multi-kinase inhibitor sorafenib but resistant to the BCL2 antagonist ABT-737. On the genetic level, FBW7 reconstitution or MCL1 depletion restores sensitivity to ABT-737, establishing MCL1 as a therapeutically relevant bypass survival mechanism that enables FBW7-deficient cells to evade apoptosis. Therefore, our work provides insight into the molecular mechanism of direct tumour suppression by FBW7 and has implications for the targeted treatment of patients with FBW7-deficient T-ALL.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3076007/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3076007/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Inuzuka, Hiroyuki -- Shaik, Shavali -- Onoyama, Ichiro -- Gao, Daming -- Tseng, Alan -- Maser, Richard S -- Zhai, Bo -- Wan, Lixin -- Gutierrez, Alejandro -- Lau, Alan W -- Xiao, Yonghong -- Christie, Amanda L -- Aster, Jon -- Settleman, Jeffrey -- Gygi, Steven P -- Kung, Andrew L -- Look, Thomas -- Nakayama, Keiichi I -- DePinho, Ronald A -- Wei, Wenyi -- GM089763/GM/NIGMS NIH HHS/ -- R01 GM089763/GM/NIGMS NIH HHS/ -- R01 GM089763-01/GM/NIGMS NIH HHS/ -- R01 GM089763-02/GM/NIGMS NIH HHS/ -- England -- Nature. 2011 Mar 3;471(7336):104-9. doi: 10.1038/nature09732.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21368833" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Apoptosis/drug effects ; Benzenesulfonates/pharmacology ; Biphenyl Compounds/pharmacology ; Cell Cycle Proteins/genetics/*metabolism ; Cell Line, Tumor ; F-Box Proteins/genetics/*metabolism ; Glycogen Synthase Kinase 3/metabolism ; Humans ; Mice ; Molecular Sequence Data ; Myeloid Cell Leukemia Sequence 1 Protein ; Niacinamide/analogs & derivatives ; Nitrophenols/pharmacology ; Phenylurea Compounds ; Phosphorylation ; Piperazines/pharmacology ; Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology ; Protein Binding/drug effects ; Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors/*chemistry/*metabolism ; Pyridines/pharmacology ; SKP Cullin F-Box Protein Ligases/*chemistry/*metabolism ; Sulfonamides/pharmacology ; Tumor Suppressor Proteins/deficiency/genetics/metabolism ; Ubiquitin-Protein Ligases/deficiency/genetics/*metabolism ; *Ubiquitination/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-07-06
    Description: Most leukocytes can roll along the walls of venules at low shear stress (1 dyn cm-2), but neutrophils have the ability to roll at tenfold higher shear stress in microvessels in vivo. The mechanisms involved in this shear-resistant rolling are known to involve cell flattening and pulling of long membrane tethers at the rear. Here we show that these long tethers do not retract as postulated, but instead persist and appear as 'slings' at the front of rolling cells. We demonstrate slings in a model of acute inflammation in vivo and on P-selectin in vitro, where P-selectin-glycoprotein-ligand-1 (PSGL-1) is found in discrete sticky patches whereas LFA-1 is expressed over the entire length on slings. As neutrophils roll forward, slings wrap around the rolling cells and undergo a step-wise peeling from the P-selectin substrate enabled by the failure of PSGL-1 patches under hydrodynamic forces. The 'step-wise peeling of slings' is distinct from the 'pulling of tethers' reported previously. Each sling effectively lays out a cell-autonomous adhesive substrate in front of neutrophils rolling at high shear stress during inflammation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3433404/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3433404/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sundd, Prithu -- Gutierrez, Edgar -- Koltsova, Ekaterina K -- Kuwano, Yoshihiro -- Fukuda, Satoru -- Pospieszalska, Maria K -- Groisman, Alex -- Ley, Klaus -- EB02185/EB/NIBIB NIH HHS/ -- R01 EB002185/EB/NIBIB NIH HHS/ -- England -- Nature. 2012 Aug 16;488(7411):399-403. doi: 10.1038/nature11248.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22763437" target="_blank"〉PubMed〈/a〉
    Keywords: Adhesiveness ; Animals ; Antigens, CD/metabolism ; Cell Adhesion ; Cell Adhesion Molecules/metabolism ; E-Selectin/metabolism ; Inflammation/immunology/metabolism/pathology ; Intercellular Adhesion Molecule-1/metabolism ; *Leukocyte Rolling ; Lymphocyte Function-Associated Antigen-1/metabolism ; Membrane Glycoproteins/metabolism ; Mice ; Mice, Inbred C57BL ; Microvessels/metabolism ; Neutrophils/*cytology/immunology/*metabolism ; P-Selectin/metabolism ; *Shear Strength ; Th1 Cells/cytology/immunology ; Venules/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-08-01
    Description: Self-renewal is the hallmark feature both of normal stem cells and cancer stem cells. Since the regenerative capacity of normal haematopoietic stem cells is limited by the accumulation of reactive oxygen species and DNA double-strand breaks, we speculated that DNA damage might also constrain leukaemic self-renewal and malignant haematopoiesis. Here we show that the histone methyl-transferase MLL4, a suppressor of B-cell lymphoma, is required for stem-cell activity and an aggressive form of acute myeloid leukaemia harbouring the MLL-AF9 oncogene. Deletion of MLL4 enhances myelopoiesis and myeloid differentiation of leukaemic blasts, which protects mice from death related to acute myeloid leukaemia. MLL4 exerts its function by regulating transcriptional programs associated with the antioxidant response. Addition of reactive oxygen species scavengers or ectopic expression of FOXO3 protects MLL4(-/-) MLL-AF9 cells from DNA damage and inhibits myeloid maturation. Similar to MLL4 deficiency, loss of ATM or BRCA1 sensitizes transformed cells to differentiation, suggesting that myeloid differentiation is promoted by loss of genome integrity. Indeed, we show that restriction-enzyme-induced double-strand breaks are sufficient to induce differentiation of MLL-AF9 blasts, which requires cyclin-dependent kinase inhibitor p21(Cip1) (Cdkn1a) activity. In summary, we have uncovered an unexpected tumour-promoting role of genome guardians in enforcing the oncogene-induced differentiation blockade in acute myeloid leukaemia.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410707/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410707/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Santos, Margarida A -- Faryabi, Robert B -- Ergen, Aysegul V -- Day, Amanda M -- Malhowski, Amy -- Canela, Andres -- Onozawa, Masahiro -- Lee, Ji-Eun -- Callen, Elsa -- Gutierrez-Martinez, Paula -- Chen, Hua-Tang -- Wong, Nancy -- Finkel, Nadia -- Deshpande, Aniruddha -- Sharrow, Susan -- Rossi, Derrick J -- Ito, Keisuke -- Ge, Kai -- Aplan, Peter D -- Armstrong, Scott A -- Nussenzweig, Andre -- CA140575/CA/NCI NIH HHS/ -- CA66996/CA/NCI NIH HHS/ -- P30 CA008748/CA/NCI NIH HHS/ -- R00 CA139009/CA/NCI NIH HHS/ -- R01 DK098263/DK/NIDDK NIH HHS/ -- R01 DK100689/DK/NIDDK NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2014 Oct 2;514(7520):107-11. doi: 10.1038/nature13483. Epub 2014 Jul 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA. ; 1] Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA [2]. ; The Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; 1] Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA [2] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA. ; Human Oncology and Pathogenesis Program and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA. ; Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Departments of Cell Biology and Medicine, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25079327" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ataxia Telangiectasia Mutated Proteins/metabolism ; BRCA1 Protein/genetics/metabolism ; Cell Transformation, Neoplastic ; Cyclin-Dependent Kinase Inhibitor p21/metabolism ; DNA Breaks, Double-Stranded ; *DNA Damage ; DNA Repair ; Female ; Gene Expression Regulation, Neoplastic ; Genes, BRCA1 ; Hematopoietic Stem Cells/cytology/metabolism/pathology ; Histone-Lysine N-Methyltransferase/deficiency/genetics/metabolism ; Leukemia, Myeloid, Acute/*enzymology/*pathology ; Male ; Mice ; *Myelopoiesis ; Oncogene Proteins, Fusion/genetics/metabolism ; Reactive Oxygen Species/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-09-29
    Description: Cancer cells accommodate multiple genetic and epigenetic alterations that initially activate intrinsic (cell-autonomous) and extrinsic (immune-mediated) oncosuppressive mechanisms. Only once these barriers to oncogenesis have been overcome can malignant growth proceed unrestrained. Tetraploidization can contribute to oncogenesis because hyperploid cells are genomically unstable. We report that hyperploid cancer cells become immunogenic because of a constitutive endoplasmic reticulum stress response resulting in the aberrant cell surface exposure of calreticulin. Hyperploid, calreticulin-exposing cancer cells readily proliferated in immunodeficient mice and conserved their increased DNA content. In contrast, hyperploid cells injected into immunocompetent mice generated tumors only after a delay, and such tumors exhibited reduced DNA content, endoplasmic reticulum stress, and calreticulin exposure. Our results unveil an immunosurveillance system that imposes immunoselection against hyperploidy in carcinogen- and oncogene-induced cancers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Senovilla, Laura -- Vitale, Ilio -- Martins, Isabelle -- Tailler, Maximilien -- Pailleret, Claire -- Michaud, Mickael -- Galluzzi, Lorenzo -- Adjemian, Sandy -- Kepp, Oliver -- Niso-Santano, Mireia -- Shen, Shensi -- Marino, Guillermo -- Criollo, Alfredo -- Boileve, Alice -- Job, Bastien -- Ladoire, Sylvain -- Ghiringhelli, Francois -- Sistigu, Antonella -- Yamazaki, Takahiro -- Rello-Varona, Santiago -- Locher, Clara -- Poirier-Colame, Vichnou -- Talbot, Monique -- Valent, Alexander -- Berardinelli, Francesco -- Antoccia, Antonio -- Ciccosanti, Fabiola -- Fimia, Gian Maria -- Piacentini, Mauro -- Fueyo, Antonio -- Messina, Nicole L -- Li, Ming -- Chan, Christopher J -- Sigl, Verena -- Pourcher, Guillaume -- Ruckenstuhl, Christoph -- Carmona-Gutierrez, Didac -- Lazar, Vladimir -- Penninger, Josef M -- Madeo, Frank -- Lopez-Otin, Carlos -- Smyth, Mark J -- Zitvogel, Laurence -- Castedo, Maria -- Kroemer, Guido -- New York, N.Y. -- Science. 2012 Sep 28;337(6102):1678-84.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉INSERM, U848, Villejuif, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23019653" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calreticulin/immunology ; Cell Line, Tumor ; Common Variable Immunodeficiency/genetics ; DNA, Neoplasm/analysis/genetics ; Endoplasmic Reticulum Stress/*immunology ; Eukaryotic Initiation Factor-2/metabolism ; Humans ; Immunocompetence ; *Immunologic Surveillance ; Mice ; Mice, Inbred BALB C ; Neoplasms/chemically induced/*genetics/*immunology ; Phosphorylation ; *Ploidies
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-07-16
    Description: Mitochondria have a major role in energy production via oxidative phosphorylation, which is dependent on the expression of critical genes encoded by mitochondrial (mt)DNA. Mutations in mtDNA can cause fatal or severely debilitating disorders with limited treatment options. Clinical manifestations vary based on mutation type and heteroplasmy (that is, the relative levels of mutant and wild-type mtDNA within each cell). Here we generated genetically corrected pluripotent stem cells (PSCs) from patients with mtDNA disease. Multiple induced pluripotent stem (iPS) cell lines were derived from patients with common heteroplasmic mutations including 3243A〉G, causing mitochondrial encephalomyopathy and stroke-like episodes (MELAS), and 8993T〉G and 13513G〉A, implicated in Leigh syndrome. Isogenic MELAS and Leigh syndrome iPS cell lines were generated containing exclusively wild-type or mutant mtDNA through spontaneous segregation of heteroplasmic mtDNA in proliferating fibroblasts. Furthermore, somatic cell nuclear transfer (SCNT) enabled replacement of mutant mtDNA from homoplasmic 8993T〉G fibroblasts to generate corrected Leigh-NT1 PSCs. Although Leigh-NT1 PSCs contained donor oocyte wild-type mtDNA (human haplotype D4a) that differed from Leigh syndrome patient haplotype (F1a) at a total of 47 nucleotide sites, Leigh-NT1 cells displayed transcriptomic profiles similar to those in embryo-derived PSCs carrying wild-type mtDNA, indicative of normal nuclear-to-mitochondrial interactions. Moreover, genetically rescued patient PSCs displayed normal metabolic function compared to impaired oxygen consumption and ATP production observed in mutant cells. We conclude that both reprogramming approaches offer complementary strategies for derivation of PSCs containing exclusively wild-type mtDNA, through spontaneous segregation of heteroplasmic mtDNA in individual iPS cell lines or mitochondrial replacement by SCNT in homoplasmic mtDNA-based disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ma, Hong -- Folmes, Clifford D L -- Wu, Jun -- Morey, Robert -- Mora-Castilla, Sergio -- Ocampo, Alejandro -- Ma, Li -- Poulton, Joanna -- Wang, Xinjian -- Ahmed, Riffat -- Kang, Eunju -- Lee, Yeonmi -- Hayama, Tomonari -- Li, Ying -- Van Dyken, Crystal -- Gutierrez, Nuria Marti -- Tippner-Hedges, Rebecca -- Koski, Amy -- Mitalipov, Nargiz -- Amato, Paula -- Wolf, Don P -- Huang, Taosheng -- Terzic, Andre -- Laurent, Louise C -- Izpisua Belmonte, Juan Carlos -- Mitalipov, Shoukhrat -- England -- Nature. 2015 Aug 13;524(7564):234-8. doi: 10.1038/nature14546. Epub 2015 Jul 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Center for Embryonic Cell and Gene Therapy, Oregon Health &Science University, 3303 S.W. Bond Avenue, Portland, Oregon 97239, USA [2] Division of Reproductive &Developmental Sciences, Oregon National Primate Research Center, Oregon Health &Science University, 505 N.W. 185th Avenue, Beaverton, Oregon 97006, USA. ; Center for Regenerative Medicine and Department of Medicine, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota 55905, USA. ; Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA. ; Department of Reproductive Medicine, University of California, San Diego, Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, California 92037, USA. ; Department of Obstetrics and Gynaecology, John Radcliffe Hospital, University of Oxford, Headington, Oxford OX3 9DU, UK. ; Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA. ; Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, Oregon 97239, USA. ; Division of Reproductive &Developmental Sciences, Oregon National Primate Research Center, Oregon Health &Science University, 505 N.W. 185th Avenue, Beaverton, Oregon 97006, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26176921" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Animals ; Cell Line ; DNA, Mitochondrial/*genetics ; Embryo, Mammalian/cytology ; Fibroblasts/cytology/metabolism/pathology ; Gene Expression Profiling ; Haplotypes/genetics ; Humans ; Induced Pluripotent Stem Cells/*metabolism ; Leigh Disease/genetics/metabolism/pathology ; Mice ; Mitochondria/*genetics/*metabolism/pathology ; Mitochondrial Diseases/*genetics/*metabolism/pathology ; Mitochondrial Encephalomyopathies/genetics/metabolism/pathology ; Mutation/genetics ; Nuclear Transfer Techniques ; Nucleotides/genetics ; Oxygen Consumption ; Polymorphism, Single Nucleotide/genetics ; Sequence Analysis, RNA ; Skin/cytology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...