ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Behavior genetics 14 (1984), S. 1-19 
    ISSN: 1573-3297
    Keywords: Mice ; alcohol ; selective breeding ; pharmacogenetics ; biometrical genetics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Psychology
    Notes: Abstract A classical Mendelian cross was derived from Long-Sleep (LS) and Short-Sleep (SS) mice, lines selectively bred for differences in response to hypnotic doses of ethanol (ETOH). Biometrical genetic procedures applied to the selection phenotype, namely, duration of the ETOH-induced loss of the righting reflex, suggest that a simple additive genetic system controls this depressant response. Sex differences were present in the Mendelian cross generations that had the longest duration responses. An estimate of the number of loci differentiated by the selection was nine. Blood ethanol levels at the time of regaining the righting reflex in the seven genotypes of the Mendelian cross showed that the selection operated solely by changing tissue sensitivity to ethanol.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-06-05
    Description: Strains of mice that show characteristic patterns of behavior are critical for research in neurobehavioral genetics. Possible confounding influences of the laboratory environment were studied in several inbred strains and one null mutant by simultaneous testing in three laboratories on a battery of six behaviors. Apparatus, test protocols, and many environmental variables were rigorously equated. Strains differed markedly in all behaviors, and despite standardization, there were systematic differences in behavior across labs. For some tests, the magnitude of genetic differences depended upon the specific testing lab. Thus, experiments characterizing mutants may yield results that are idiosyncratic to a particular laboratory.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Crabbe, J C -- Wahlsten, D -- Dudek, B C -- AA00170/AA/NIAAA NIH HHS/ -- AA10760/AA/NIAAA NIH HHS/ -- DA10731/DA/NIDA NIH HHS/ -- New York, N.Y. -- Science. 1999 Jun 4;284(5420):1670-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Portland Alcohol Research Center, Department of Veterans Affairs Medical Center, Portland, OR 97201, USA. crabbe@ohsu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10356397" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Laboratory/genetics ; Anxiety ; *Behavior, Animal ; Confounding Factors (Epidemiology) ; Drinking Behavior ; *Environment ; Female ; Genetics, Behavioral/*methods ; Genotype ; Male ; Mice ; Mice, Inbred Strains/genetics ; Mice, Mutant Strains/genetics ; Motor Activity ; Psychological Tests ; Reproducibility of Results
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-16
    Description: CD4(+) T-helper type 2 (T(H)2) cells, characterized by their expression of interleukin (IL)-4, IL-5, IL-9 and IL-13, are required for immunity to helminth parasites and promote the pathological inflammation associated with asthma and allergic diseases. Polymorphisms in the gene encoding the cytokine thymic stromal lymphopoietin (TSLP) are associated with the development of multiple allergic disorders in humans, indicating that TSLP is a critical regulator of T(H)2 cytokine-associated inflammatory diseases. In support of genetic analyses, exaggerated TSLP production is associated with asthma, atopic dermatitis and food allergies in patients, and studies in murine systems demonstrated that TSLP promotes T(H)2 cytokine-mediated immunity and inflammation. However, the mechanisms through which TSLP induces T(H)2 cytokine responses remain poorly defined. Here we demonstrate that TSLP promotes systemic basophilia, that disruption of TSLP-TSLPR interactions results in defective basophil responses, and that TSLPR-sufficient basophils can restore T(H)2-cell-dependent immunity in vivo. TSLP acted directly on bone-marrow-resident progenitors to promote basophil responses selectively. Critically, TSLP could elicit basophil responses in both IL-3-IL-3R-sufficient and -deficient environments, and genome-wide transcriptional profiling and functional analyses identified heterogeneity between TSLP-elicited versus IL-3-elicited basophils. Furthermore, activated human basophils expressed TSLPR, and basophils isolated from eosinophilic oesophagitis patients were distinct from classical basophils. Collectively, these studies identify previously unrecognized heterogeneity within the basophil cell lineage and indicate that expression of TSLP may influence susceptibility to multiple allergic diseases by regulating basophil haematopoiesis and eliciting a population of functionally distinct basophils that promote T(H)2 cytokine-mediated inflammation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3263308/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3263308/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Siracusa, Mark C -- Saenz, Steven A -- Hill, David A -- Kim, Brian S -- Headley, Mark B -- Doering, Travis A -- Wherry, E John -- Jessup, Heidi K -- Siegel, Lori A -- Kambayashi, Taku -- Dudek, Emily C -- Kubo, Masato -- Cianferoni, Antonella -- Spergel, Jonathan M -- Ziegler, Steven F -- Comeau, Michael R -- Artis, David -- AI083480/AI/NIAID NIH HHS/ -- AI61570/AI/NIAID NIH HHS/ -- AI74878/AI/NIAID NIH HHS/ -- AI87990/AI/NIAID NIH HHS/ -- F31 GM082187/GM/NIGMS NIH HHS/ -- F32 AI085828/AI/NIAID NIH HHS/ -- R01 AI061570/AI/NIAID NIH HHS/ -- R01 AI061570-09/AI/NIAID NIH HHS/ -- R01 AI074878/AI/NIAID NIH HHS/ -- R01 AI074878-05/AI/NIAID NIH HHS/ -- R01 AI095466/AI/NIAID NIH HHS/ -- R01 AI095466-02/AI/NIAID NIH HHS/ -- R01 HL107589/HL/NHLBI NIH HHS/ -- R21 AI083480/AI/NIAID NIH HHS/ -- R21 AI083480-02/AI/NIAID NIH HHS/ -- T32 AI060516/AI/NIAID NIH HHS/ -- U01 AI095608/AI/NIAID NIH HHS/ -- U01 AI095608-02/AI/NIAID NIH HHS/ -- England -- Nature. 2011 Aug 14;477(7363):229-33. doi: 10.1038/nature10329.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21841801" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Asthma/immunology ; Basophils/*cytology/metabolism ; Cytokines/genetics/immunology/*metabolism ; Dermatitis, Atopic/immunology ; Food Hypersensitivity/immunology ; *Hematopoiesis ; Humans ; Hypersensitivity, Immediate/*immunology ; Inflammation/*immunology/*metabolism ; *Interleukin-3/metabolism ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Phenotype ; Receptors, Cytokine/metabolism ; Receptors, Interleukin-3/deficiency/genetics/metabolism ; Th2 Cells/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-11-11
    Description: Inactivation of APC is a strongly predisposing event in the development of colorectal cancer, prompting the search for vulnerabilities specific to cells that have lost APC function. Signalling through the mTOR pathway is known to be required for epithelial cell proliferation and tumour growth, and the current paradigm suggests that a critical function of mTOR activity is to upregulate translational initiation through phosphorylation of 4EBP1 (refs 6, 7). This model predicts that the mTOR inhibitor rapamycin, which does not efficiently inhibit 4EBP1 (ref. 8), would be ineffective in limiting cancer progression in APC-deficient lesions. Here we show in mice that mTOR complex 1 (mTORC1) activity is absolutely required for the proliferation of Apc-deficient (but not wild-type) enterocytes, revealing an unexpected opportunity for therapeutic intervention. Although APC-deficient cells show the expected increases in protein synthesis, our study reveals that it is translation elongation, and not initiation, which is the rate-limiting component. Mechanistically, mTORC1-mediated inhibition of eEF2 kinase is required for the proliferation of APC-deficient cells. Importantly, treatment of established APC-deficient adenomas with rapamycin (which can target eEF2 through the mTORC1-S6K-eEF2K axis) causes tumour cells to undergo growth arrest and differentiation. Taken together, our data suggest that inhibition of translation elongation using existing, clinically approved drugs, such as the rapalogs, would provide clear therapeutic benefit for patients at high risk of developing colorectal cancer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4304784/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4304784/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Faller, William J -- Jackson, Thomas J -- Knight, John R P -- Ridgway, Rachel A -- Jamieson, Thomas -- Karim, Saadia A -- Jones, Carolyn -- Radulescu, Sorina -- Huels, David J -- Myant, Kevin B -- Dudek, Kate M -- Casey, Helen A -- Scopelliti, Alessandro -- Cordero, Julia B -- Vidal, Marcos -- Pende, Mario -- Ryazanov, Alexey G -- Sonenberg, Nahum -- Meyuhas, Oded -- Hall, Michael N -- Bushell, Martin -- Willis, Anne E -- Sansom, Owen J -- 311301/European Research Council/International -- A7130/Cancer Research UK/United Kingdom -- G1000078/1/National Centre for the Replacement, Refinement and Reduction of Animals in Research/United Kingdom -- MC_UP_A600_1023/Medical Research Council/United Kingdom -- Cancer Research UK/United Kingdom -- England -- Nature. 2015 Jan 22;517(7535):497-500. doi: 10.1038/nature13896. Epub 2014 Nov 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK. ; Medical Research Council Toxicology Unit, Leicester LE1 9HN, UK. ; Institut Necker-Enfants Malades, CS 61431, Paris, France Institut National de la Sante et de la Recherche Medicale, U1151, F-75014 Paris, France Universite Paris Descartes, Sorbonne Paris Cite, 75006 Paris, France. ; Department of Pharmacology, Rutgers The State University of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA. ; Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montreal, Quebec H3A 1A3, Canada. ; Department of Biochemistry and Molecular Biology, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel. ; Biozentrum, University of Basel, CH-4056 Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25383520" target="_blank"〉PubMed〈/a〉
    Keywords: Adenomatous Polyposis Coli Protein/deficiency/genetics ; Animals ; Cell Proliferation ; Cell Transformation, Neoplastic/metabolism/*pathology ; Elongation Factor 2 Kinase/deficiency/genetics/metabolism ; Enzyme Activation ; Genes, APC ; Intestinal Neoplasms/genetics/*metabolism/*pathology ; Male ; Mice ; Mice, Inbred C57BL ; Multiprotein Complexes/*metabolism ; Oncogene Protein p55(v-myc)/metabolism ; *Peptide Chain Elongation, Translational ; Peptide Elongation Factor 2/metabolism ; Ribosomal Protein S6 Kinases/metabolism ; Signal Transduction ; TOR Serine-Threonine Kinases/*metabolism ; Wnt Proteins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...