ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-01-24
    Description: Hypertension affects one billion people and is a principal reversible risk factor for cardiovascular disease. Pseudohypoaldosteronism type II (PHAII), a rare Mendelian syndrome featuring hypertension, hyperkalaemia and metabolic acidosis, has revealed previously unrecognized physiology orchestrating the balance between renal salt reabsorption and K(+) and H(+) excretion. Here we used exome sequencing to identify mutations in kelch-like 3 (KLHL3) or cullin 3 (CUL3) in PHAII patients from 41 unrelated families. KLHL3 mutations are either recessive or dominant, whereas CUL3 mutations are dominant and predominantly de novo. CUL3 and BTB-domain-containing kelch proteins such as KLHL3 are components of cullin-RING E3 ligase complexes that ubiquitinate substrates bound to kelch propeller domains. Dominant KLHL3 mutations are clustered in short segments within the kelch propeller and BTB domains implicated in substrate and cullin binding, respectively. Diverse CUL3 mutations all result in skipping of exon 9, producing an in-frame deletion. Because dominant KLHL3 and CUL3 mutations both phenocopy recessive loss-of-function KLHL3 mutations, they may abrogate ubiquitination of KLHL3 substrates. Disease features are reversed by thiazide diuretics, which inhibit the Na-Cl cotransporter in the distal nephron of the kidney; KLHL3 and CUL3 are expressed in this location, suggesting a mechanistic link between KLHL3 and CUL3 mutations, increased Na-Cl reabsorption, and disease pathogenesis. These findings demonstrate the utility of exome sequencing in disease gene identification despite the combined complexities of locus heterogeneity, mixed models of transmission and frequent de novo mutation, and establish a fundamental role for KLHL3 and CUL3 in blood pressure, K(+) and pH homeostasis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3278668/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3278668/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boyden, Lynn M -- Choi, Murim -- Choate, Keith A -- Nelson-Williams, Carol J -- Farhi, Anita -- Toka, Hakan R -- Tikhonova, Irina R -- Bjornson, Robert -- Mane, Shrikant M -- Colussi, Giacomo -- Lebel, Marcel -- Gordon, Richard D -- Semmekrot, Ben A -- Poujol, Alain -- Valimaki, Matti J -- De Ferrari, Maria E -- Sanjad, Sami A -- Gutkin, Michael -- Karet, Fiona E -- Tucci, Joseph R -- Stockigt, Jim R -- Keppler-Noreuil, Kim M -- Porter, Craig C -- Anand, Sudhir K -- Whiteford, Margo L -- Davis, Ira D -- Dewar, Stephanie B -- Bettinelli, Alberto -- Fadrowski, Jeffrey J -- Belsha, Craig W -- Hunley, Tracy E -- Nelson, Raoul D -- Trachtman, Howard -- Cole, Trevor R P -- Pinsk, Maury -- Bockenhauer, Detlef -- Shenoy, Mohan -- Vaidyanathan, Priya -- Foreman, John W -- Rasoulpour, Majid -- Thameem, Farook -- Al-Shahrouri, Hania Z -- Radhakrishnan, Jai -- Gharavi, Ali G -- Goilav, Beatrice -- Lifton, Richard P -- KL2 RR024138/RR/NCRR NIH HHS/ -- KL2 RR024138-07/RR/NCRR NIH HHS/ -- P30 DK079310/DK/NIDDK NIH HHS/ -- P30 DK079310-04S1/DK/NIDDK NIH HHS/ -- P30-DK079310/DK/NIDDK NIH HHS/ -- UL1-RR024139/RR/NCRR NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Jan 22;482(7383):98-102. doi: 10.1038/nature10814.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06510, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22266938" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Blood Pressure/genetics ; Carrier Proteins/chemistry/*genetics ; Cohort Studies ; Cullin Proteins/chemistry/*genetics ; Electrolytes ; Exons/genetics ; Female ; Gene Expression Profiling ; Genes, Dominant/genetics ; Genes, Recessive/genetics ; Genotype ; Homeostasis/genetics ; Humans ; Hydrogen-Ion Concentration ; Hypertension/complications/*genetics/physiopathology ; Male ; Mice ; Models, Molecular ; Molecular Sequence Data ; Mutation/*genetics ; Phenotype ; Potassium/metabolism ; Pseudohypoaldosteronism/complications/*genetics/physiopathology ; Sodium Chloride/metabolism ; Water-Electrolyte Imbalance/complications/*genetics/physiopathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-05-12
    Description: R-spondin proteins strongly potentiate Wnt signalling and function as stem-cell growth factors. Despite the biological and therapeutic significance, the molecular mechanism of R-spondin action remains unclear. Here we show that the cell-surface transmembrane E3 ubiquitin ligase zinc and ring finger 3 (ZNRF3) and its homologue ring finger 43 (RNF43) are negative feedback regulators of Wnt signalling. ZNRF3 is associated with the Wnt receptor complex, and inhibits Wnt signalling by promoting the turnover of frizzled and LRP6. Inhibition of ZNRF3 enhances Wnt/beta-catenin signalling and disrupts Wnt/planar cell polarity signalling in vivo. Notably, R-spondin mimics ZNRF3 inhibition by increasing the membrane level of Wnt receptors. Mechanistically, R-spondin interacts with the extracellular domain of ZNRF3 and induces the association between ZNRF3 and LGR4, which results in membrane clearance of ZNRF3. These data suggest that R-spondin enhances Wnt signalling by inhibiting ZNRF3. Our study provides new mechanistic insights into the regulation of Wnt receptor turnover, and reveals ZNRF3 as a tractable target for therapeutic exploration.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hao, Huai-Xiang -- Xie, Yang -- Zhang, Yue -- Charlat, Olga -- Oster, Emma -- Avello, Monika -- Lei, Hong -- Mickanin, Craig -- Liu, Dong -- Ruffner, Heinz -- Mao, Xiaohong -- Ma, Qicheng -- Zamponi, Raffaella -- Bouwmeester, Tewis -- Finan, Peter M -- Kirschner, Marc W -- Porter, Jeffery A -- Serluca, Fabrizio C -- Cong, Feng -- England -- Nature. 2012 Apr 29;485(7397):195-200. doi: 10.1038/nature11019.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22575959" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Polarity/physiology ; Colorectal Neoplasms/genetics ; DNA-Binding Proteins/deficiency/genetics/metabolism ; Feedback, Physiological ; Female ; Frizzled Receptors/metabolism ; HEK293 Cells ; Humans ; Low Density Lipoprotein Receptor-Related Protein-6/metabolism ; Male ; Mice ; Mice, Knockout ; Oncogene Proteins/deficiency/genetics/metabolism ; Protein Stability ; Protein Structure, Tertiary ; Receptors, G-Protein-Coupled/deficiency/genetics/metabolism ; Receptors, Wnt/*metabolism ; Thrombospondins/*metabolism ; Ubiquitin-Protein Ligases/chemistry/*deficiency/genetics/*metabolism ; Ubiquitination ; Wnt Signaling Pathway ; Xenopus ; Zebrafish ; beta Catenin/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1983-03-04
    Description: Six structural homologs of spermidine and five of its precursor, putrescine, were studied for their ability to prevent cytostasis of cultured L1210 leukemia cells induced by alpha-difluoromethylornithine (DFMO), a specific inhibitor of putrescine biosynthesis. High-performance liquid chromatography and competition studies with spermidine indicated that the homologs, which vary in the length of the carbon chain separating the amines, penetrated the cells. The structural specificity of the spermidine carrier was defined. Three of the six spermidine homologs supported cell growth during a 48-hour incubation in the presence of DFMO, indicating that a two-carbon extension of spermidine structure was tolerated for biological function. Two of the five putrescine homologs supported growth after being converted by the cells to their respective spermidine homologs. The central nitrogen of spermidine appears to be essential for function since diamines of chain length comparable to that of spermidine did not prevent DFMO cytostasis. No more than 15 percent of the spermidine normally present in L1210 cells was required for cell proliferation in the presence of DFMO.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Porter, C W -- Bergeron, R J -- CA-22153/CA/NCI NIH HHS/ -- CA-24538/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1983 Mar 4;219(4588):1083-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6823570" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Division ; *Cell Physiological Phenomena ; Eukaryotic Cells/*physiology ; Leukemia L1210/pathology ; Mice ; Ornithine Decarboxylase Inhibitors ; Putrescine/physiology ; Spermidine/analogs & derivatives/*physiology ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1984-06-01
    Description: The effects of marginal malnourishment , infections, and environmental chemicals on growth and reproductive success in Swiss-Webster white mice and wild deer mice were studied with fractional factorial designs. Interaction effects were discovered. For example, malnourished mice were more sensitive to virus exposure and environmental chemicals (a plant growth regulator or polychlorinated biphenyls). Since several commercial plant growth regulators also appear to suppress the immune system, these results cast doubt on the adequacy of current toxicity testing procedures in which factors are studied individually and not in combination.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Porter, W P -- Hinsdill, R -- Fairbrother, A -- Olson, L J -- Jaeger, J -- Yuill, T -- Bisgaard, S -- Hunter, W G -- Nolan, K -- 5-T32-ES07015/ES/NIEHS NIH HHS/ -- New York, N.Y. -- Science. 1984 Jun 1;224(4652):1014-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6426058" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Wild ; Chlormequat/adverse effects ; Cyclophosphamide/adverse effects ; Encephalomyelitis, Venezuelan Equine/physiopathology ; Environmental Exposure ; Female ; Food Supply ; Growth/*drug effects ; Humans ; Immunity/*drug effects ; Mice ; Nutrition Disorders/physiopathology ; Peromyscus ; Polychlorinated Biphenyls/adverse effects ; Pregnancy ; Reproduction/*drug effects ; Water Supply
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...