ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1999-11-13
    Description: Transcriptional coactivators have been viewed as constitutively active components, using transcription factors mainly to localize their functions. Here, it is shown that PPARgamma coactivator-1 (PGC-1) promotes transcription through the assembly of a complex that includes the histone acetyltransferases steroid receptor coactivator-1 (SRC-1) and CREB binding protein (CBP)/p300. PGC-1 has a low inherent transcriptional activity when it is not bound to a transcription factor. The docking of PGC-1 to peroxisome proliferator-activated receptor gamma (PPARgamma) stimulates an apparent conformational change in PGC-1 that permits binding of SRC-1 and CBP/p300, resulting in a large increase in transcriptional activity. Thus, transcription factor docking switches on the activity of a coactivator protein.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Puigserver, P -- Adelmant, G -- Wu, Z -- Fan, M -- Xu, J -- O'Malley, B -- Spiegelman, B M -- DK54477/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1999 Nov 12;286(5443):1368-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10558993" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; COS Cells ; DNA-Binding Proteins/metabolism ; E1A-Associated p300 Protein ; Gene Expression Regulation ; Histone Acetyltransferases ; Mice ; Nuclear Proteins/chemistry/*metabolism ; Nuclear Receptor Coactivator 1 ; Nuclear Respiratory Factors ; Protein Binding ; Protein Conformation ; Receptors, Cytoplasmic and Nuclear/*metabolism ; Recombinant Fusion Proteins/metabolism ; Trans-Activators/chemistry/*metabolism ; Transcription Factors/chemistry/*metabolism ; *Transcription, Genetic ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1989-09-15
    Description: Gene targeting via homologous recombination-mediated disruption in murine embryonic stem (ES) cells has been described for a number of different genes expressed in these cells; it has not been reported for any nonexpressed genes. Pluripotent stem cell lines were isolated with homologously recombined insertions at three different loci: c-fos, which is expressed at a low level in ES cells, and two genes, adipsin and adipocyte P2 (aP2), which are transcribed specifically in adipose cells and are not expressed at detectable levels in ES cells. The frequencies at which homologous recombination events occurred did not correlate with levels of expression of the targeted genes, but did occur at rates comparable to those previously reported for genes that are actively expressed in ES cells. Injection of successfully targeted cells into mouse blastocysts resulted in the formation of chimeric mice. These studies demonstrate the feasibility of altering genes in ES cells that are expressed in a tissue-specific manner in the mouse, in order to study their function at later developmental stages.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Johnson, R S -- Sheng, M -- Greenberg, M E -- Kolodner, R D -- Papaioannou, V E -- Spiegelman, B M -- DK 31405/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1989 Sep 15;245(4923):1234-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dana-Farber Cancer Institute, Boston, MA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2506639" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue/cytology ; Animals ; Blotting, Northern ; Blotting, Southern ; Carrier Proteins/biosynthesis/*genetics ; Cell Line ; Chimera ; Complement Factor D ; DNA, Recombinant ; DNA-Binding Proteins/biosynthesis/genetics ; Fatty Acid-Binding Proteins ; Fatty Acids/metabolism ; *Gene Expression Regulation ; Genetic Vectors ; Mice ; *Neoplasm Proteins ; *Nerve Tissue Proteins ; Proto-Oncogene Proteins/biosynthesis/*genetics ; Proto-Oncogene Proteins c-fos ; RNA, Messenger/biosynthesis/genetics ; *Recombination, Genetic ; Serine Endopeptidases/*genetics ; Stem Cells/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-07-31
    Description: Brown adipose cells are specialized to dissipate chemical energy in the form of heat, as a physiological defence against cold and obesity. PRDM16 (PR domain containing 16) is a 140 kDa zinc finger protein that robustly induces brown fat determination and differentiation. Recent data suggests that brown fat cells arise in vivo from a Myf5-positive, myoblastic lineage by the action of PRDM16 (ref. 3); however, the molecular mechanisms responsible for this developmental switch is unclear. Here we show that PRDM16 forms a transcriptional complex with the active form of C/EBP-beta (also known as LAP), acting as a critical molecular unit that controls the cell fate switch from myoblastic precursors to brown fat cells. Forced expression of PRDM16 and C/EBP-beta is sufficient to induce a fully functional brown fat program in naive fibroblastic cells, including skin fibroblasts from mouse and man. Transplantation of fibroblasts expressing these two factors into mice gives rise to an ectopic fat pad with the morphological and biochemical characteristics of brown fat. Like endogenous brown fat, this synthetic brown fat tissue acts as a sink for glucose uptake, as determined by positron emission tomography with fluorodeoxyglucose. These data indicate that the PRDM16-C/EBP-beta complex initiates brown fat formation from myoblastic precursors, and may provide opportunities for the development of new therapeutics for obesity and type-2 diabetes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2754867/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2754867/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kajimura, Shingo -- Seale, Patrick -- Kubota, Kazuishi -- Lunsford, Elaine -- Frangioni, John V -- Gygi, Steven P -- Spiegelman, Bruce M -- DK081605/DK/NIDDK NIH HHS/ -- DK31405/DK/NIDDK NIH HHS/ -- GM67945/GM/NIGMS NIH HHS/ -- HG3456/HG/NHGRI NIH HHS/ -- K99 DK087853/DK/NIDDK NIH HHS/ -- R37 DK031405/DK/NIDDK NIH HHS/ -- R37 DK031405-28/DK/NIDDK NIH HHS/ -- S10-RR-023010/RR/NCRR NIH HHS/ -- England -- Nature. 2009 Aug 27;460(7259):1154-8. doi: 10.1038/nature08262. Epub 2009 Jul 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19641492" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue, Brown/*cytology/*metabolism ; Animals ; CCAAT-Enhancer-Binding Protein-beta/genetics/*metabolism ; Cell Differentiation ; Cell Line ; Cells, Cultured ; Choristoma/metabolism ; DNA-Binding Proteins/genetics/*metabolism ; Fibroblasts/cytology/metabolism ; Glucose/metabolism ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; Multiprotein Complexes ; Myoblasts/*cytology/*metabolism ; Skin/cytology ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1989-06-23
    Description: Adipsin is a serine protease that is secreted by adipocytes into the bloodstream; it is deficient in several animal models of obesity, representing a striking example of defective gene expression in this disorder. Recombinant mouse adipsin was purified and its biochemical and enzymatic properties were studied in order to elucidate the function of this protein. Activated adipsin has little or no proteolytic activity toward most substrates but has the same activity as human complement factor D, cleaving complement factor B when it is complexed with activated complement component C3. Like authentic factor D, adipsin can activate the alternative pathway of complement, resulting in red blood cell lysis. Decreased (58 to 80 percent) complement factor D activity, relative to lean controls, was observed as a common feature of several experimental models of obesity, including the ob/ob, db/db, and monosodium glutamate (MSG)-injected mouse and the fa/fa rat. These results suggest that adipsin and the alternative pathway of complement may play an unexpected but important role in the regulation of systemic energy balance in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rosen, B S -- Cook, K S -- Yaglom, J -- Groves, D L -- Volanakis, J E -- Damm, D -- White, T -- Spiegelman, B M -- DK31403/DK/NIDDK NIH HHS/ -- DK34605/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1989 Jun 23;244(4911):1483-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dana-Farber Cancer Institute, Boston, MA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2734615" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue/metabolism ; Amino Acid Sequence ; Animals ; Cell Line ; Complement Activating Enzymes/*metabolism ; Complement Factor D/*metabolism ; Complement Pathway, Alternative ; Cricetinae ; DNA/genetics ; Gene Expression Regulation ; Humans ; Immunoblotting ; Mice ; Molecular Sequence Data ; Obesity/genetics/*immunology/metabolism ; RNA, Messenger/metabolism ; Recombinant Proteins ; Serine Endopeptidases/genetics/isolation & purification/*metabolism ; Substrate Specificity ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2005-08-16
    Description: Mesenchymal stem cells (MSCs) are a pluripotent cell type that can differentiate into several distinct lineages. Two key transcription factors, Runx2 and peroxisome proliferator-activated receptor gamma (PPARgamma), drive MSCs to differentiate into either osteoblasts or adipocytes, respectively. How these two transcription factors are regulated in order to specify these alternate cell fates remains a pivotal question. Here we report that a 14-3-3-binding protein, TAZ (transcriptional coactivator with PDZ-binding motif), coactivates Runx2-dependent gene transcription while repressing PPARgamma-dependent gene transcription. By modulating TAZ expression in model cell lines, mouse embryonic fibroblasts, and primary MSCs in culture and in zebrafish in vivo, we observed alterations in osteogenic versus adipogenic potential. These results indicate that TAZ functions as a molecular rheostat that modulates MSC differentiation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hong, Jeong-Ho -- Hwang, Eun Sook -- McManus, Michael T -- Amsterdam, Adam -- Tian, Yu -- Kalmukova, Ralitsa -- Mueller, Elisabetta -- Benjamin, Thomas -- Spiegelman, Bruce M -- Sharp, Phillip A -- Hopkins, Nancy -- Yaffe, Michael B -- CA042063/CA/NCI NIH HHS/ -- GM60594/GM/NIGMS NIH HHS/ -- GM68762/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 Aug 12;309(5737):1074-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Cancer Research, Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, E18-580, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16099986" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/*cytology ; Animals ; Bone Morphogenetic Protein 2 ; Bone Morphogenetic Proteins/pharmacology ; Cell Differentiation ; Cell Line ; Core Binding Factor Alpha 1 Subunit ; Gene Expression Regulation, Developmental ; Humans ; Mesenchymal Stromal Cells/*cytology/physiology ; Mice ; Neoplasm Proteins/metabolism ; Oligonucleotides, Antisense ; Osteoblasts/*cytology ; Osteocalcin/genetics ; Osteogenesis ; PPAR gamma/metabolism ; Promoter Regions, Genetic ; Protein Structure, Tertiary ; Proteins/chemistry/genetics/*physiology ; RNA, Small Interfering ; Transcription Factors/chemistry/genetics/metabolism/*physiology ; Transcriptional Activation ; Transfection ; Transforming Growth Factor beta/pharmacology ; Zebrafish ; Zebrafish Proteins/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-09-06
    Description: PPARgamma is the functioning receptor for the thiazolidinedione (TZD) class of antidiabetes drugs including rosiglitazone and pioglitazone. These drugs are full classical agonists for this nuclear receptor, but recent data have shown that many PPARgamma-based drugs have a separate biochemical activity, blocking the obesity-linked phosphorylation of PPARgamma by Cdk5. Here we describe novel synthetic compounds that have a unique mode of binding to PPARgamma, completely lack classical transcriptional agonism and block the Cdk5-mediated phosphorylation in cultured adipocytes and in insulin-resistant mice. Moreover, one such compound, SR1664, has potent antidiabetic activity while not causing the fluid retention and weight gain that are serious side effects of many of the PPARgamma drugs. Unlike TZDs, SR1664 also does not interfere with bone formation in culture. These data illustrate that new classes of antidiabetes drugs can be developed by specifically targeting the Cdk5-mediated phosphorylation of PPARgamma.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3179551/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3179551/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Choi, Jang Hyun -- Banks, Alexander S -- Kamenecka, Theodore M -- Busby, Scott A -- Chalmers, Michael J -- Kumar, Naresh -- Kuruvilla, Dana S -- Shin, Youseung -- He, Yuanjun -- Bruning, John B -- Marciano, David P -- Cameron, Michael D -- Laznik, Dina -- Jurczak, Michael J -- Schurer, Stephan C -- Vidovic, Dusica -- Shulman, Gerald I -- Spiegelman, Bruce M -- Griffin, Patrick R -- 1RC4DK090861/DK/NIDDK NIH HHS/ -- DK31405/DK/NIDDK NIH HHS/ -- R01 DK040936/DK/NIDDK NIH HHS/ -- R01 GM084041/GM/NIGMS NIH HHS/ -- R01 GM084041-03/GM/NIGMS NIH HHS/ -- R01-GM084041/GM/NIGMS NIH HHS/ -- R37 DK031405/DK/NIDDK NIH HHS/ -- R37 DK031405-30/DK/NIDDK NIH HHS/ -- R37 DK031405-31/DK/NIDDK NIH HHS/ -- RC4 DK090861/DK/NIDDK NIH HHS/ -- RC4 DK090861-01/DK/NIDDK NIH HHS/ -- S10 RR027270/RR/NCRR NIH HHS/ -- U24 DK059635/DK/NIDDK NIH HHS/ -- U54 MH074404/MH/NIMH NIH HHS/ -- U54 MH074404-01/MH/NIMH NIH HHS/ -- U54-MH074404/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- Intramural NIH HHS/ -- England -- Nature. 2011 Sep 4;477(7365):477-81. doi: 10.1038/nature10383.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cancer Biology and Division of Metabolism and Chronic Disease, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21892191" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3-L1 Cells ; Adipocytes/drug effects/metabolism ; Adipose Tissue, White/drug effects/metabolism ; Animals ; Biphenyl Compounds/chemistry/pharmacology ; Body Fluids/drug effects ; COS Cells ; Cercopithecus aethiops ; Cyclin-Dependent Kinase 5/*antagonists & inhibitors ; Dietary Fats/pharmacology ; Disease Models, Animal ; Dose-Response Relationship, Drug ; HEK293 Cells ; Humans ; Hypoglycemic Agents/adverse effects/chemistry/*pharmacology ; Ligands ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Obese ; Models, Molecular ; Obesity/chemically induced/metabolism ; Osteogenesis/drug effects ; PPAR gamma/agonists/chemistry/*metabolism ; Phosphorylation/drug effects ; Phosphoserine/metabolism ; Thiazolidinediones/adverse effects/pharmacology ; Transcription, Genetic/drug effects ; Tumor Necrosis Factor-alpha/pharmacology ; Weight Gain/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-11-20
    Description: Obesity-linked insulin resistance is a major precursor to the development of type 2 diabetes. Previous work has shown that phosphorylation of PPARgamma (peroxisome proliferator-activated receptor gamma) at serine 273 by cyclin-dependent kinase 5 (Cdk5) stimulates diabetogenic gene expression in adipose tissues. Inhibition of this modification is a key therapeutic mechanism for anti-diabetic drugs that bind PPARgamma, such as the thiazolidinediones and PPARgamma partial agonists or non-agonists. For a better understanding of the importance of this obesity-linked PPARgamma phosphorylation, we created mice that ablated Cdk5 specifically in adipose tissues. These mice have both a paradoxical increase in PPARgamma phosphorylation at serine 273 and worsened insulin resistance. Unbiased proteomic studies show that extracellular signal-regulated kinase (ERK) kinases are activated in these knockout animals. Here we show that ERK directly phosphorylates serine 273 of PPARgamma in a robust manner and that Cdk5 suppresses ERKs through direct action on a novel site in MAP kinase/ERK kinase (MEK). Importantly, pharmacological inhibition of MEK and ERK markedly improves insulin resistance in both obese wild-type and ob/ob mice, and also completely reverses the deleterious effects of the Cdk5 ablation. These data show that an ERK/Cdk5 axis controls PPARgamma function and suggest that MEK/ERK inhibitors may hold promise for the treatment of type 2 diabetes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4297557/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4297557/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Banks, Alexander S -- McAllister, Fiona E -- Camporez, Joao Paulo G -- Zushin, Peter-James H -- Jurczak, Michael J -- Laznik-Bogoslavski, Dina -- Shulman, Gerald I -- Gygi, Steven P -- Spiegelman, Bruce M -- DK31405/DK/NIDDK NIH HHS/ -- DK93638/DK/NIDDK NIH HHS/ -- K01 DK093638/DK/NIDDK NIH HHS/ -- R01 DK031405/DK/NIDDK NIH HHS/ -- England -- Nature. 2015 Jan 15;517(7534):391-5. doi: 10.1038/nature13887. Epub 2014 Nov 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA. ; Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Yale Mouse Metabolic Phenotyping Center and Departments of Internal Medicine and Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA. ; Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA. ; 1] Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25409143" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/enzymology/metabolism ; Adipose Tissue/cytology/enzymology/metabolism ; Animals ; Cell Proliferation ; Cells, Cultured ; Cyclin-Dependent Kinase 5/deficiency/*metabolism ; Diabetes Mellitus/*metabolism ; Diet, High-Fat ; Extracellular Signal-Regulated MAP Kinases/*metabolism ; Humans ; Insulin Resistance ; MAP Kinase Kinase 2/antagonists & inhibitors/metabolism ; MAP Kinase Signaling System ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Obese ; PPAR gamma/chemistry/*metabolism ; Phosphorylation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1996-12-20
    Description: Adipocyte differentiation is an important component of obesity and other metabolic diseases. This process is strongly inhibited by many mitogens and oncogenes. Several growth factors that inhibit fat cell differentiation caused mitogen-activated protein (MAP) kinase-mediated phosphorylation of the dominant adipogenic transcription factor peroxisome proliferator-activated receptor gamma (PPARgamma) and reduction of its transcriptional activity. Expression of PPARgamma with a nonphosphorylatable mutation at this site (serine-112) yielded cells with increased sensitivity to ligand-induced adipogenesis and resistance to inhibition of differentiation by mitogens. These results indicate that covalent modification of PPARgamma by serum and growth factors is a major regulator of the balance between cell growth and differentiation in the adipose cell lineage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hu, E -- Kim, J B -- Sarraf, P -- Spiegelman, B M -- R37DK31405/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1996 Dec 20;274(5295):2100-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8953045" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Adipocytes/*cytology/metabolism ; Animals ; Blood ; Calcium-Calmodulin-Dependent Protein Kinases/antagonists & inhibitors/*metabolism ; Cell Differentiation ; Cell Line ; Enzyme Inhibitors/pharmacology ; Epidermal Growth Factor/pharmacology ; Flavonoids/pharmacology ; Insulin/pharmacology ; Ligands ; Mice ; Mitogens/pharmacology ; Mutation ; Phosphorylation ; Rats ; Receptors, Cytoplasmic and Nuclear/chemistry/genetics/*metabolism ; Tetradecanoylphorbol Acetate/pharmacology ; Transcription Factors/chemistry/genetics/*metabolism ; Transcription, Genetic/drug effects ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1996-11-22
    Description: Fatty acid binding proteins (FABPs) are small cytoplasmic proteins that are expressed in a highly tissue-specific manner and bind to fatty acids such as oleic and retinoic acid. Mice with a null mutation in aP2, the gene encoding the adipocyte FABP, were developmentally and metabolically normal. The aP2-deficient mice developed dietary obesity but, unlike control mice, they did not develop insulin resistance or diabetes. Also unlike their obese wild-type counterparts, obese aP2-/- animals failed to express in adipose tissue tumor necrosis factor-alpha (TNF-alpha), a molecule implicated in obesity-related insulin resistance. These results indicate that aP2 is central to the pathway that links obesity to insulin resistance, possibly by linking fatty acid metabolism to expression of TNF-alpha.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hotamisligil, G S -- Johnson, R S -- Distel, R J -- Ellis, R -- Papaioannou, V E -- Spiegelman, B M -- DK31405/DK/NIDDK NIH HHS/ -- HD27295/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1996 Nov 22;274(5291):1377-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Nutrition, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA. CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8910278" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue/*metabolism ; Animals ; Blood Glucose/metabolism ; Carrier Proteins/genetics/metabolism/*physiology ; Dietary Fats/administration & dosage ; Fatty Acid-Binding Proteins ; Fatty Acids/*metabolism ; Female ; Gene Expression Regulation ; Gene Targeting ; Glucose Tolerance Test ; Homeostasis ; Insulin/blood ; *Insulin Resistance ; Male ; Mice ; Mice, Inbred C57BL ; Mutation ; Myelin P2 Protein/genetics/metabolism/*physiology ; *Neoplasm Proteins ; *Nerve Tissue Proteins ; Obesity/*metabolism ; Triglycerides/blood ; Tumor Necrosis Factor-alpha/*biosynthesis/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-03-31
    Description: Brown and beige adipose tissues can dissipate chemical energy as heat through thermogenic respiration, which requires uncoupling protein 1 (UCP1). Thermogenesis from these adipocytes can combat obesity and diabetes, encouraging investigation of factors that control UCP1-dependent respiration in vivo. Here we show that acutely activated thermogenesis in brown adipose tissue is defined by a substantial increase in levels of mitochondrial reactive oxygen species (ROS). Remarkably, this process supports in vivo thermogenesis, as pharmacological depletion of mitochondrial ROS results in hypothermia upon cold exposure, and inhibits UCP1-dependent increases in whole-body energy expenditure. We further establish that thermogenic ROS alter the redox status of cysteine thiols in brown adipose tissue to drive increased respiration, and that Cys253 of UCP1 is a key target. UCP1 Cys253 is sulfenylated during thermogenesis, while mutation of this site desensitizes the purine-nucleotide-inhibited state of the carrier to adrenergic activation and uncoupling. These studies identify mitochondrial ROS induction in brown adipose tissue as a mechanism that supports UCP1-dependent thermogenesis and whole-body energy expenditure, which opens the way to improved therapeutic strategies for combating metabolic disorders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chouchani, Edward T -- Kazak, Lawrence -- Jedrychowski, Mark P -- Lu, Gina Z -- Erickson, Brian K -- Szpyt, John -- Pierce, Kerry A -- Laznik-Bogoslavski, Dina -- Vetrivelan, Ramalingam -- Clish, Clary B -- Robinson, Alan J -- Gygi, Steve P -- Spiegelman, Bruce M -- DK31405/DK/NIDDK NIH HHS/ -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2016 Apr 7;532(7597):112-6. doi: 10.1038/nature17399. Epub 2016 Mar 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA. ; Department of Neurology, Harvard Medical School, Boston, Massachusetts 02215, USA. ; MRC Mitochondrial Biology Unit, Hills Road, Cambridge CB2 0XY, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27027295" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue, Brown/chemistry/cytology/metabolism ; Animals ; Cell Respiration ; Cysteine/*chemistry/genetics/metabolism ; *Energy Metabolism/drug effects ; Female ; Humans ; Ion Channels/*chemistry/deficiency/genetics/*metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mitochondria/drug effects/*metabolism ; Mitochondrial Proteins/*chemistry/deficiency/genetics/*metabolism ; Mutant Proteins/chemistry/genetics/metabolism ; Oxidation-Reduction ; Reactive Oxygen Species/*metabolism ; Sulfhydryl Compounds/metabolism ; *Thermogenesis/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...