ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-06
    Description: One of the grand challenges of the Global Precipitation Measurement (GPM) mission is to improve cold season precipitation measurements in middle and high latitudes through the use of high-frequency passive microwave radiometry. For this, the Weather Research and Forecasting (WRF) model with the Goddard microphysics scheme is coupled with a satellite data simulation unit (WRF-SDSU) that has been developed to facilitate over-land snowfall retrieval algorithms by providing a virtual cloud library and microwave brightness temperature (Tb) measurements consistent with the GPM Microwave Imager (GMI). This study tested the Goddard cloud microphysics scheme in WRF for two snowstorm events, a lake effect and a synoptic event, that occurred between 20 and 22 January 2007 over the Canadian CloudSAT/CALIPSO Validation Project (C3VP) site in Ontario, Canada. The 24h-accumulated snowfall predicted by the WRF model with the Goddard microphysics was comparable to the observed accumulated snowfall by the ground-based radar for both events. The model correctly predicted the onset and ending of both snow events at the CARE site. WRF simulations capture the basic cloud properties as seen by the ground-based radar and satellite (i.e., CloudSAT, AMSU-B) observations as well as the observed cloud streak organization in the lake event. This latter result reveals that WRF was able to capture the cloud macro-structure reasonably well.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-06
    Description: Advances in computing power allow atmospheric prediction models to be mn at progressively finer scales of resolution, using increasingly more sophisticated physical parameterizations and numerical methods. The representation of cloud microphysical processes is a key component of these models, over the past decade both research and operational numerical weather prediction models have started using more complex microphysical schemes that were originally developed for high-resolution cloud-resolving models (CRMs). A recent report to the United States Weather Research Program (USWRP) Science Steering Committee specifically calls for the replacement of implicit cumulus parameterization schemes with explicit bulk schemes in numerical weather prediction (NWP) as part of a community effort to improve quantitative precipitation forecasts (QPF). An improved Goddard bulk microphysical parameterization is implemented into a state-of the-art of next generation of Weather Research and Forecasting (WRF) model. High-resolution model simulations are conducted to examine the impact of microphysical schemes on two different weather events (a midlatitude linear convective system and an Atllan"ic hurricane). The results suggest that microphysics has a major impact on the organization and precipitation processes associated with a summer midlatitude convective line system. The 31CE scheme with a cloud ice-snow-hail configuration led to a better agreement with observation in terms of simulated narrow convective line and rainfall intensity. This is because the 3ICE-hail scheme includes dense ice precipitating (hail) particle with very fast fall speed (over 10 m/s). For an Atlantic hurricane case, varying the microphysical schemes had no significant impact on the track forecast but did affect the intensity (important for air-sea interaction)
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: During the past decade, both research and operational numerical weather prediction models [e.g. Weather Research and Forecasting Model (WRF)] have started using more complex microphysical schemes originally developed for high-resolution cloud resolving models (CRMs) with a 1-2 km or less horizontal resolutions. The WRF is a next-generation meso-scale forecast model and assimilation system that has incorporated a modern software framework, advanced dynamics, numeric and data assimilation techniques, a multiple moveable nesting capability, and improved physical packages. The WRF model can be used for a wide range of applications, from idealized research to operational forecasting, with an emphasis on horizontal grid sizes in the range of 1-10 km. The current WRF includes several different microphysics options. At Goddard, four different cloud microphysics schemes (warm rain only, two-class of ice, two three-class of ice with either graupel or hail) are implemented into the WRF. The performances of these schemes have been compared to those from other WRF microphysics scheme options for an Atlantic hurricane case. In addition, a brief review and comparison on the previous modeling studies on the impact of microphysics schemes and microphysical processes on intensity and track of hurricane will be presented. Generally, almost all modeling studies found that the microphysics schemes did not have major impacts on track forecast, but did have more effect on the intensity. All modeling studies found that the simulated hurricane has rapid deepening and/or intensification for the warm rain-only case. It is because all hydrometeors were very large raindrops, and they fell out quickly at and near the eye-wall region. This would hydrostatically produce the lowest pressure. In addition, these modeling studies suggested that the simulated hurricane becomes unrealistically strong by removing the evaporative cooling of cloud droplets and melting of ice particles. This is due to the much weaker downdraft simulated. However, there are many differences between different modeling studies and these differences were identified and discussed.
    Keywords: Meteorology and Climatology
    Type: GSFC.JA.7134.2012
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: Cloud microphysical processes play an important role in non-hydrostatic high-resolution simulations. Over the past decade both research and operational numerical weather prediction models have started using more complex cloud microphysical schemes that were originally developed for high-resolution cloud-resolving models. An improved bulk microphysical parameterization (adopted from the Goddard microphysics schemes) has recently implemented into the Weather Research and Forecasting (WRF) model. This bulk microphysical scheme has three different options --- 2ICE (cloud ice & snow), 3ICE-graupel (cloud ice, snow & graupel) and 3ICE-hail (cloud ice, snow & hail). High-resolution model simulations are conducted to examine the impact of microphysical schemes on two different weather events (a midlatitude linear convective system and an Atlantic hurricane). In addition, this bulk microphysical parameterization is compared with WIRF's three other bulk microphysical schemes.
    Keywords: Meteorology and Climatology
    Type: American Geophysical Union Meeting; Dec 10, 2007 - Dec 14, 2007; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Aerosols affect the Earth's radiation balance directly and cloud microphysical processes indirectly via the activation of cloud condensation and ice nuclei. These two effects have often been considered separately and independently, hence the need to assess their combined impact given the differing nature of their effects on convective clouds. To study both effects, an aerosol-microphysics-radiation coupling, including Goddard microphysics and radiation schemes, was implemented into the NASA Unified Weather Research and Forecasting model (NU-WRF). Fully coupled NU-WRF simulations were conducted for a mesoscale convective system (MCS) that passed through the Niamey, Niger area on 6-7 August 2006 during an African Monsoon Multidisciplinary Analysis (AMMA) special observing period. The results suggest that rainfall is reduced when aerosol indirect effects are included, regardless of the aerosol direct effect. Daily mean radiation heating profiles in the area traversed by the MCS showed the aerosol (mainly mineral dust) direct effect had the largest impact near cloud tops just above 200 hectopascals where short-wave heating increased by about 0.8 Kelvin per day; the weakest long-wave cooling was at around 250 hectopascals. It was also found that more condensation and ice nuclei as a result of higher aerosol/dust concentrations led to increased amounts of all cloud hydrometeors because of the microphysical indirect effect, and the radiation direct effect acts to reduce precipitating cloud particles (rain, snow and graupel) in the middle and lower cloud layers while increasing the non-precipitating particles (ice) in the cirrus anvil. However, when the aerosol direct effect was activated, regardless of the indirect effect, the onset of MCS precipitation was delayed about 2 hours, in conjunction with the delay in the activation of cloud condensation and ice nuclei. Overall, for this particular environment, model set-up and physics configuration, the effect of aerosol radiative heating due to mineral dust overwhelmed the effect of the aerosols on microphysics.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN20409 , Quarterly Journal of the Royal Meteorological Society (ISSN 1477-870X); 140; 684; 2158-2175
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Based on ensemble numerical simulations, we find that possible responses of Sandy-like superstorms under the influence of a substantially warmer Atlantic Ocean bifurcate into two groups. In the first group, storms are similar to present-day Sandy from genesis to extratropical transition, except they are much stronger, with peak Power Destructive Index (PDI) increased by 50-80%, heavy rain by 30-50%, and maximum storm size (MSS) approximately doubled. In the second group, storms amplify substantially over the interior of the Atlantic warm pool, with peak PDI increased by 100-160%, heavy rain by 70-180%, and MSS more than tripled compared to present-day Superstorm Sandy. These storms when exiting the warm pool, recurve northeastward out to sea, subsequently interact with the developing midlatitude storm by mutual counterclockwise rotation around each other and eventually amplify into a severe Northeastern coastal storm, making landfall over the extreme northeastern regions from Maine to Nova Scotia.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN41905 , Geophysical Research Letters (ISSN 0094-8276) (e-ISSN 1944-8007); 43; 2; 802-811
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...