ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-06
    Description: In support of the Ice, Cloud, and land Elevation Satellite (ICESat)-II mission, this paper studies the bias in surface-elevation measurements caused by undetected thin clouds. The ICESat-II satellite may only have a 1064-nm single-channel lidar onboard. Less sensitive to clouds than the 532-nm channel, the 1064-nm channel tends to miss thin clouds. Previous studies have demonstrated that scattering by cloud particles increases the photon-path length, thus resulting in biases in ice-sheet-elevation measurements from spaceborne lidars. This effect is referred to as atmospheric path delay. This paper complements previous studies in the following ways: First, atmospheric path delay is estimated over the ice sheets based on cloud statistics from the Geoscience Laser Altimeter System onboard ICESat and the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua. Second, the effect of cloud particle size and shape is studied with the state-of-the-art phase functions developed for MODIS cirrus- cloud microphysical model. Third, the contribution of various orders of scattering events to the path delay is studied, and an analytical model of the first-order scattering contribution is developed. This paper focuses on the path delay as a function of telescope field of view (FOV). The results show that reducing telescope FOV can significantly reduce the expected path delay. As an example, the average path delays for FOV = 167 microrad (a 100-m-diameter circle on the surface) caused by thin undetected clouds by the 1064-nm channel over Greenland and East Antarctica are illustrated.
    Keywords: Meteorology and Climatology
    Type: IEEE Transactions on Geoscience and Remote Sensing (ISSN 0196-2892); Volume 48; Iss. 1; 250 - 259
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: African dust can transport across the tropical Atlantic and reach the Amazon basin, exerting far-reaching impacts on climate in downwind regions. The transported dust influences the surface-atmosphere interactions and cloud and precipitation processes through perturbing the surface radiative budget and atmospheric radiative heating and acting as cloud condensation nuclei and ice nuclei. Dust also influences biogeochemical cycle and climate through providing nutrients vital to the productivity of ocean biomass and Amazon forests. Assessing these climate impacts relies on an accurate quantification of dust transport and deposition. Currently model simulations show extremely large diversity, which calls for a need of observational constraints. Kaufman et al. (2005) estimated from MODIS aerosol measurements that about 144 Tg of dust is deposited into the tropical Atlantic and 50 Tg of dust into the Amazon in 2001. This estimated dust import to Amazon is a factor of 3-4 higher than other observations and models. However, several studies have argued that the oversimplified characterization of dust vertical profile in the study would have introduced large uncertainty and very likely a high bias. In this study we quantify the trans-Atlantic dust transport and deposition by using 7 years (2007-2013) observations from CALIPSO lidar. CALIPSO acquires high-resolution aerosol extinction and depolarization profiles in both cloud-free and above-cloud conditions. The unique CALIPSO capability of profiling aerosols above clouds offers an unprecedented opportunity of examining uncertainties associated with the use of MODIS clear-sky data. Dust is separated from other types of aerosols using the depolarization measurements. We estimated that on the basis of 7-year average, 118142 Tg of dust is deposited into the tropical Atlantic and 3860 Tg of dust into the Amazon basin. Substantial interannual variations are observed during the period, with the maximum to minimum ratio of about 1.6 and 2.5 for the deposition to the tropical Atlantic and Amazon, respectively. The MODIS-based estimates appear to fall within the range of CALIPSO-based estimates; and the difference between MODIS and CALIPSO estimates can be largely attributed to the interannual variability, which is corroborated by long-term surface dust concentration observations in the tropical Atlantic. Considering that CALIPSO generally tends to underestimate the aerosol loading, our estimate is likely to represent a low bound for the dust transport and deposition estimate. The finding suggests that models have substantial biases and considerable effort is needed to improve model simulations of dust cycle.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN15263 , iLEAPS Science Conference; May 12, 2014 - May 16, 2014; Nanjing; China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The Greenland and Antarctic ice sheets, which contain enough ice to raise sea level by about 7 and 60 m, respectively, are losing mass at an increasing rate. To acquire continuous information of the cryosphere, after the Ice, Cloud, and land Elevation Satellite (ICESat) (2003-2010), NASA is actively planning for the ICESat-2 mission. Both ICESat and ICESat-2 are space-borne lidar altimetry systems. The systems measure the time of flight of the arriving photons that are reflected by the surface to deduce the elevation of the underlying terrain. As one of NASA's top priority missions, ICESat-2 is scheduled to launch in 2016. One of the major science goals of ICESat-2 is to quantify the ice sheet mass balance to determine its contributions to the sea level change and its impacts on ocean circulation (Abdalati et al. 2010). Compared to ICESat, which operates at 40 Hz and records the reflected laser energy as a waveform, the significantly improved ICESat-2 lidar employs a 532 nm micro-pulse photon counting system that operates at a high frequency of 10kHz with single photon detectability (Yang et al. 2012). To achieve its science goals, ICESat-2 requires the ability of detecting the elevation change with an accuracy of 0.2 cm/year over the entire ice sheet. Since every photon emitted by the lidar system will travel through the atmosphere, clouds can certainly affect the flight time of the arriving photons. Forward scattering by cloud particles increases the photon path length, thus resulting in biases in ice sheet elevation measurements known as atmospheric path delay (Duta et al. 2001, Yang et al. 2010, 2011). To ensure the accuracy of ICESat-2 surface elevation measurements, it is critical to understand how clouds would affect the travel time of arriving photons. In this talk, we will first present a framework that simulates the behavior of a space-borne 532 mn micro-pulse photon counting lidar in cloudy and clear atmospheres. To investigate the process of laser propagation through clouds, a 3-D Monte Carlo radiative transfer model is used to simulate the photon path distribution and the Poisson distribution is adopted for the number of photon returns. Since the photon counting system only registers the time of the first arriving photon within the detector "dead time", the retrieved average surface elevation tends to bias towards higher values. This is known as the first photon bias. With the scenarios simulated here, the first photon bias for clear sky is about 6.5 cm. Clouds affect surface altimetry in two ways: (1) cloud attenuation lowers the average number of arriving photons and hence reduces the first photon bias; (2) cloud forward scattering increases the photon path length and makes the surface appear further away from the satellite. Compared to clear sky, the average surface elevation detected by the photon counting system for cloudy sky with optical depth 1.0 is 4.0 to 6.0 cm lower for the simulations conducted. The effect of surface roughness on the accuracy of elevation retrievals will also discussed.
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.01060.2012 , 5th Shanhai International Symposium on Nuclear Sciences and Applications; Jun 27, 2012 - Jul 03, 2012; Shanghai; China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: The separation of cloud and clear scenes is usually one of the first steps in satellite data analysis. Before deriving a geophysical product, almost every satellite mission requires a cloud mask to label a scene as either clear or cloudy through a cloud detection procedure. For clear scenes, products such as surface properties may be retrieved; for cloudy scenes, scientist can focus on studying the cloud properties. Hence the quality of cloud detection directly affects the quality of most satellite operational and research products. This is certainly true for the Ice, Cloud, and land Elevation Satellite-2 (lCESat-2), which is the successor to the ICESat-l. As a top priority mission, ICESat-2 will continue to provide measurements of ice sheets and sea ice elevation on a global scale. Studies have shown that clouds can significantly affect the accuracy of the retrieved results. For example, some of the photons (a photon is a basic unit of light) in the laser beam will be scattered by cloud particles on its way. So instead of traveling in a straight line, these photons are scattered sideways and have traveled a longer path. This will result in biases in ice sheet elevation measurements. Hence cloud screening must be done and be done accurately before the retrievals.
    Keywords: Meteorology and Climatology
    Type: GSFC.JA.5748.2011
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Blowing snow processes commonly occur over the earth's ice sheets when the 10 mile wind speed exceeds a threshold value. These processes play a key role in the sublimation and redistribution of snow thereby influencing the surface mass balance. Prior field studies and modeling results have shown the importance of blowing snow sublimation and transport on the surface mass budget and hydrological cycle of high-latitude regions. For the first time, we present continent-wide estimates of blowing snow sublimation and transport over Antarctica for the period 2006-2016 based on direct observation of blowing snow events. We use an improved version of the blowing snow detection algorithm developed for previous work that uses atmospheric backscatter measurements obtained from the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) lidar aboard the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) satellite. The blowing snow events identified by CALIPSO and meteorological fields from MERRA-2 are used to compute the blowing snow sublimation and transport rates. Our results show that maximum sublimation occurs along and slightly inland of the coastline. This is contrary to the observed maximum blowing snow frequency which occurs over the interior. The associated temperature and moisture reanalysis fields likely contribute to the spatial distribution of the maximum sublimation values. However, the spatial pattern of the sublimation rate over Antarctica is consistent with modeling studies and precipitation estimates. Overall, our results show that the 2006-2016 Antarctica average integrated blowing snow sublimation is about 393 +/- 196 Gt yr(exp -1), which is considerably larger than previous model-derived estimates. We find maximum blowing snow transport amount of 5 Mt km-1 yr(exp -1) over parts of East Antarctica and estimate that the average snow transport from continent to ocean is about 3.7 Gt yr(exp -1). These continent-wide estimates are the first of their kind and can be used to help model and constrain the surface mass budget over Antarctica.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN51641 , The Cryosphere (e-ISSN 1994-0424); 11; 6; 2555-2569
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Blowing snow over Antarctica is a widespread and frequent event. Satellite remote sensing using lidar has shown that blowing snow occurs over 70% of the time over large areas of Antarctica in winter. The transport and sublimation of blowing snow are important terms in the ice sheet mass balance equation and the latter is also an important part of the hydrological cycle. Until now the only way to estimate the magnitude of these processes was through model parameterization. We present a technique that uses direct satellite observations of blowing snow and model (MERRA-2) temperature and humidity fields to compute both transport and sublimation of blowing snow over Antarctica for the period 2006 to 2016. The results show a larger annual continent-wide integrated sublimation than current published estimates and a significant transport of snow from continent to ocean. The talk will also include the lidar backscatter structure of blowing snow layers that often reach heights of 200 to 300 m as well as the first dropsonde measurements of temperature, moisture and wind through blowing snow layers.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN52136 , American Geophysical Union (AGU) Fall Meeting; Dec 10, 2017 - Dec 15, 2017; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-12-21
    Description: Blowing snow is a frequent and ubiquitous phenomenon over most over Antarctica. The transport and sublimation of blowing snow are important for the mass balance of the Antarctic ice sheet and the latter is a major contributor to the hydrological cycle in high latitude regions. While much is known about blowing snow from surface observations, our knowledge of the thermodynamic structure of deep blowing snow layers is lacking. Here dropsonde measurements are used to investigate the temperature, moisture and wind structure of deep blowing snow layers over Antarctica. The temperature lapse rate within the blowing snow layer is found to be at times close to dry adiabatic and on average between dry and moist adiabatic. Initiation of blowing snow causes the surface temperature to increase to a degree proportional to the depth of the blowing snow layer. The relative humidity is generally largest near the surface (but less than 100%) and decreases with height reaching a minimum near the top of the layer. These findings are at odds with accepted theory which assumes blowing snow sublimation will cool and eventually saturate the layer. The observations support the conclusion that high levels of wind shear induced turbulence causes mixing and entrainment of warmer and drier air from above the blowing snow layer which suppresses humidity and produces the observed well-mixed temperature structure within the layer. The results may have important consequences for Antarctic ice sheet mass balance and the moisture budget of the atmosphere in high latitudes.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN65717 , Journal of Applied Meteorology and Climatology (ISSN 1558-8432) (e-ISSN 1558-8424); 57; 12; 2733-2748
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-19
    Description: Planned to fly in 2014, the Deep Space Climate Observatory (DSCOVR) would see the whole sunlit half of the Earth from the L 1 Lagrangian point and would provide simultaneous data on cloud and aerosol properties with its Earth Polychromatic Imaging Camera (EPIC). EPIC images the Earth on a 2Kx2K CCD array, which gives a horizontal resolution of about 10 km at nadir. A filter-wheel provides consecutive images in 10 spectral channels ranging from the UV to the near-IR, including the oxygen A and B bands. This paper presents a study of retrieving cloud height with EPIC's oxygen A and B bands. As the first step, we analyzed the effect of cloud optical and geometrical properties, sun-view geometry, and surface type on the cloud height determination. Second, we developed two cloud height retrieval algorithms that are based on the Mixed Lambertian-Equivalent Reflectivity (MLER) concept: one utilizes the absolute radiances at the Oxygen A and B bands and the other uses the radiance ratios between the absorption and reference channels of the two bands. Third, we applied the algorithms to the simulated EPIC data and to the data from SCanning Imaging Absorption SpectroMeter for Atmospheric CartograpHY (SCIAMACHY) observations. Results show that oxygen A and B bands complement each other: A band is better suited for retrievals over ocean, while B band is better over vegetated land due to a much darker surface. Improvements to the MLER model, including corrections to surface contribution and photon path inside clouds, will also be discussed.
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.01059.2012 , 2012 Intrnational Radiation Symposium; Aug 06, 2012 - Aug 08, 2012; Berlin; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...