ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: Prior to launch, the space shuttle might be described as a very large thermos bottle containing substantial quantities of cryogenic fuels. Because thermal insulation is a critical design requirement, the external wall of the launch vehicle fuel tank is covered with an insulating foam layer. This foam is fragile and can be damaged by very minor impacts, such as that from small- to medium-size hail, which may go unnoticed. In May 1999, hail damage to the top of the External Tank (ET) of STS-96 required a rollback from the launch pad to the Vehicle Assembly Building (VAB) for repair of the insulating foam. Because of the potential for hail damage to the ET while exposed to the weather, a vigilant hail sentry system using impact transducers was developed as a hail damage warning system and to record and quantify hail events. The Kennedy Space Center (KSC) Hail Monitor System, a joint effort of the NASA and University Affiliated Spaceport Technology Development Contract (USTDC) Physics Labs, was first deployed for operational testing in the fall of 2006. Volunteers from the Community Collaborative Rain. Hail, and Snow Network (CoCoRaHS) in conjunction with Colorado State University were and continue to be active in testing duplicate hail monitor systems at sites in the hail prone high plains of Colorado. The KSC Hail Monitor System (HMS), consisting of three stations positioned approximately 500 ft from the launch pad and forming an approximate equilateral triangle (see Figure 1), was deployed to Pad 39B for support of STS-115. Two months later, the HMS was deployed to Pad 39A for support of STS-116. During support of STS-117 in late February 2007, an unusual hail event occurred in the immediate vicinity of the exposed space shuttle and launch pad. Hail data of this event was collected by the HMS and analyzed. Support of STS-118 revealed another important application of the hail monitor system. Ground Instrumentation personnel check the hail monitors daily when a vehicle is on the launch pad, with special attention after any storm suspected of containing hail. If no hail is recorded by the HMS, the vehicle and pad inspection team has no need to conduct a thorough inspection of the vehicle immediately following a storm. On the afternoon of July 13, 2007, hail on the ground was reported by observers at the VAB, about three miles west of Pad 39A, as well as at several other locations around Kennedy Space Center. The HMS showed no impact detections, indicating that the shuttle had not been damaged by any of the numerous hail events which occurred that day.
    Keywords: Meteorology and Climatology
    Type: KSC-2007-049 , KSC-2008-016 , 12th Conference on IOAS-AOLS; Jan 20, 2008 - Jan 24, 2008; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: During the late afternoon of March 30, 2011 at approximately 21:25 - 21:30 GMT, hail monitor stations at Pad 39A recorded rice to pea size hail. The duration of the event was approximately 5 minutes. The maximum size detected by the three hail monitors was 10 - 12 mm. The 12 mm marble size value was measured by the active impact sensor at site #2, which experienced high winds. This 12 mm measurement may be artificially higher by one or two mm due to the extra hail kinetic energy resulting from the extreme horizontal winds. High winds from the west produced a few notable long streak-like dents in the hail pads. High winds were also responsible for damage to facilities near hail monitor site #2 on the west side of pad A (a dumpster was overturned, and a picnic table roof was demolished). NWS radar volume scan (see Figure I) showed 60-65 dBZ reflectivity values in the lowest 4 scan elevations around and over the pad 39A area. Since the lowest 0.5 degree scan showed a definite 65 dBZ signature, it is unlikely that hail had an opportunity to melt before reaching the ground. Some of the larger passive hail pad dents were shallower than what would be expected from solid frozen ice hydrometeor dents. Therefore, it is possible that the larger pea size hail may have been softer than the smaller rice size hail. This would be consistent with some melting before reaching the ground.
    Keywords: Meteorology and Climatology
    Type: KSC-2011-097 , Florida Chapter of the Acoustical Sociely of America; Apr 21, 2011; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: The Vehicle Assembly Building (VAB) was constructed in the mid-1960s to house the Saturn V moon rocket while it was being assembled. Designed to withstand hurricanes and tropical storms, the V AB has a foundation consisting of 30,000 cubic yards of concrete strengthened by 4,225 steel rods driven 160 feet into limestone bedrock. The goal of the VAB Sway Investigation, which began collecting data in April 201 0 and ended in November 2012, was to quantify the displacement or sway of the VAB as a function of wind loading.
    Keywords: Meteorology and Climatology
    Type: NASA/TM-2013-216320
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: Radar data can usually detect hail; however, it is difficult for present day radar to accurately discriminate between hail and rain. Local ground-based hail sensors are much better at detecting hail against a rain background, and when incorporated with radar data, provide a much better local picture of a severe rain or hail event. The previous disdrometer interpolation/ extrapolation algorithm described a method to interpolate horizontally between multiple ground sensors (a minimum of three) and extrapolate vertically. This work is a modification to that approach that generates a purely extrapolated 3D spatial distribution when using a single sensor.
    Keywords: Meteorology and Climatology
    Type: KSC-13244 , NASA Tech Briefs, January 2013; 6
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: The contour error map (CEM) algorithm and the software that implements the algorithm are means of quantifying correlations between sets of time-varying data that are binarized and registered on spatial grids. The present version of the software is intended for use in evaluating numerical weather forecasts against observational sea-breeze data. In cases in which observational data come from off-grid stations, it is necessary to preprocess the observational data to transform them into gridded data. First, the wind direction is gridded and binarized so that D(i,j;n) is the input to CEM based on forecast data and d(i,j;n) is the input to CEM based on gridded observational data. Here, i and j are spatial indices representing 1.25-km intervals along the west-to-east and south-to-north directions, respectively; and n is a time index representing 5-minute intervals. A binary value of D or d = 0 corresponds to an offshore wind, whereas a value of D or d = 1 corresponds to an onshore wind. CEM includes two notable subalgorithms: One identifies and verifies sea-breeze boundaries; the other, which can be invoked optionally, performs an image-erosion function for the purpose of attempting to eliminate river-breeze contributions in the wind fields.
    Keywords: Meteorology and Climatology
    Type: KSC-12489 , NASA Tech Briefs, August 2005; 14
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-13
    Description: A side-scatter imaging (SSI) technique using a 447 nm, 500 mW laser and a Nikon D80 camera was tested at Kennedy Space Center, Florida during the passing of a rain band associated with Tropical Storm Colin. The June 6, 2016, 22:00 GMT rain event was intense but short-lived owing to the strong west-to-east advection of the rain band. An effort to validate the optical extinction measurement was conducted by setting up a line of three tipping rain gauges along an 80 m east-west path and below the laser beam. Differences between tipping bucket measurements were correlated to the extinction coefficient profile along the lasers path, as determined by the SSI measurement. In order to compare the tipping bucket to the optical extinction data, a Marshall-Palmer DSD model was assumed. Since this was a daytime event, the laser beam was difficult to detect in the camera images, pointing out an important limitation of SSI measurements: the practical limit of DSD density that can be effectively detected and analyzed under daylight conditions using this laser and camera, corresponds to a fairly moderate rainfall rate on the order of 20 mmh (night measurements achieve a much improved sensitivity). The SSI analysis model under test produced promising results, but in order to use the SSI method for routine meteorological studies, improvements to the math model will be required.
    Keywords: Meteorology and Climatology
    Type: KSC-E-DAA-TN40835 , European Geosciences Union General Assembly 2017; Apr 23, 2017 - Apr 28, 2017; Vienna; Austria
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Using a technique recently developed for estimating the density of surface dust dispersed during a rocket landing, measuring the extinction of a laser passing through rain (or dust in the rocket case) yields an estimate of the 2nd moment of the particle cloud, and rainfall drop size distribution (DSD) in the terrestrial meteorological case. With the exception of disdrometers, instruments that measure rainfall make in direct measurements of the DSD. Most common of these instruments are the rainfall rate gauge measuring the 1 1/3 th moment, (when using a D(exp 2/3) dependency on terminal velocity). Instruments that scatter microwaves off of hydrometeors, such as the WSR-880, vertical wind profilers, and microwave disdrometers, measure the 6th moment of the DSD. By projecting a laser onto a target, changes in brightness of the laser spot against the target background during rain, yield a measurement of the DSD 2nd moment, using the Beer-Lambert law. In order to detect the laser attenuation within the 8-bit resolution of most camera image arrays, a minimum path length is required, depending on the intensity of the rainfall rate. For moderate to heavy rainfall, a laser path length of 100 m is sufficient to measure variations in optical extinction using a digital camera. A photo-detector could replace the camera, for automated installations. In order to spatially correlate the 2nd moment measurements to a collocated disdrometer or tipping bucket, the laser's beam path can be reflected multiple times using mirrors to restrict the spatial extent of the measurement. In cases where a disdrometer is not available, complete DSD estimates can be produced by parametric fitting of DSD model to the 2nd moment data in conjunction with tipping bucket data. In cases where a disdrometer is collocated, the laser extinction technique may yield a significant improvement to insitu disdrometer validation and calibration strategies
    Keywords: Meteorology and Climatology
    Type: KSC-2013-009 , American Meteorological Society Conference; Jan 07, 2013; Austin, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-10
    Description: This report presents a new objective technique to verify predictions of the sea-breeze phenomenon over east-central Florida by the Regional Atmospheric Modeling System (RAMS) mesoscale numerical weather prediction (NWP) model. The Contour Error Map (CEM) technique identifies sea-breeze transition times in objectively-analyzed grids of observed and forecast wind, verifies the forecast sea-breeze transition times against the observed times, and computes the mean post-sea breeze wind direction and speed to compare the observed and forecast winds behind the sea-breeze front. The CEM technique is superior to traditional objective verification techniques and previously-used subjective verification methodologies because: It is automated, requiring little manual intervention, It accounts for both spatial and temporal scales and variations, It accurately identifies and verifies the sea-breeze transition times, and It provides verification contour maps and simple statistical parameters for easy interpretation. The CEM uses a parallel lowpass boxcar filter and a high-order bandpass filter to identify the sea-breeze transition times in the observed and model grid points. Once the transition times are identified, CEM fits a Gaussian histogram function to the actual histogram of transition time differences between the model and observations. The fitted parameters of the Gaussian function subsequently explain the timing bias and variance of the timing differences across the valid comparison domain. Once the transition times are all identified at each grid point, the CEM computes the mean wind direction and speed during the remainder of the day for all times and grid points after the sea-breeze transition time. The CEM technique performed quite well when compared to independent meteorological assessments of the sea-breeze transition times and results from a previously published subjective evaluation. The algorithm correctly identified a forecast or observed sea-breeze occurrence or absence 93% of the time during the two- month evaluation period from July and August 2000. Nearly all failures in CEM were the result of complex precipitation features (observed or forecast) that contaminated the wind field, resulting in a false identification of a sea-breeze transition. A qualitative comparison between the CEM timing errors and the subjectively determined observed and forecast transition times indicate that the algorithm performed very well overall. Most discrepancies between the CEM results and the subjective analysis were again caused by observed or forecast areas of precipitation that led to complex wind patterns. The CEM also failed on a day when the observed sea- breeze transition affected only a very small portion of the verification domain. Based on the results of CEM, the RAMS tended to predict the onset and movement of the sea-breeze transition too early and/or quickly. The domain-wide timing biases provided by CEM indicated an early bias on 30 out of 37 days when both an observed and forecast sea breeze occurred over the same portions of the analysis domain. These results are consistent with previous subjective verifications of the RAMS sea breeze predictions. A comparison of the mean post-sea breeze winds indicate that RAMS has a positive wind-speed bias for .all days, which is also consistent with the early bias in the sea-breeze transition time since the higher wind speeds resulted in a faster inland penetration of the sea breeze compared to reality.
    Keywords: Meteorology and Climatology
    Type: NASA/CR-2003-211187 , NAS 1.26:211187 , Rept-03-001
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-12
    Description: Methodologies to improve disdrometer processing, loosely based on mathematical techniques common to the field of particle flow and fluid mechanics, are examined and tested. The inclusion of advection and vertical wind field estimates appear to produce significantly improved results in a Lagrangian hydrometeor trajectory model, in spite of very strict assumptions of noninteracting hydrometeors, constant vertical air velocity, and time independent advection during the scan time interval. Wind field data can be extracted from each radar elevation scan by plotting and analyzing reflectivity contours over the disdrometer site and by collecting the radar radial velocity data to obtain estimates of advection. Specific regions of disdrometer spectra (drop size versus time) often exhibit strong gravitational sorting signatures, from which estimates of vertical velocity can be extracted. These independent wind field estimates become inputs and initial conditions to the Lagrangian trajectory simulation of falling hydrometeors.
    Keywords: Meteorology and Climatology
    Type: KSC-2009-021
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The well-known Z-R power law Z A R(sup b) uses two parameters, A and b, in order to relate rainfall rate R to measured weather radar reflectivity Z. A common method used by researchers is to compute Z and R from disdrometer data and then extract the A-b parameter pair from a log-linear line fit to a scatter plot of Z-R pairs. Even though it may seem far more truthful to extract the parameter pair from a fit of radar Z(sub R) versus gauge rainfall rate R(sub G), the extreme difference in spatial and temporal sampling volumes between radar and rain gauge creates a slew of problems that can generally only be solved by using rain gauge arrays and long sampling averages. Disdrometer derived A-b parameters are easily obtained and can provide information for the study of stratiform versus convective rainfall. However, an inconsistency appears when comparing averaged A-b pairs from various researchers. Values of b range from 1.26 to 1.51 for both stratiform and convective events. Paradoxically the values of A fall into three groups: 150 to 200 for convective; 200 to 400 for stratiform; and 400 to 500 again for convective. This apparent inconsistency can be explained by computing the A-b pair using the gamma DSD coupled with a modified drop terminal velocity model, v(D) alpha D(sup beta) - w, where w is a somewhat artificial constant vertical velocity of the air above the disdrometer. This model predicts three regions of A, corresponding to w less than 0, w = 0, and w greater than 0, which approximately matches observed data.
    Keywords: Meteorology and Climatology
    Type: KSC-E-DAA-TN30908 , EGU General Assembly 2016; Apr 17, 2016 - Apr 22, 2016; Vienna; Austria
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...