ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-17
    Description: A Regional Land-Atmosphere Climate Simulation (RELACS) System is being developed and implemented at NASA Goddard Space Flight Center. One of the major goals of RELACS is to use a regional scale model with improved physical processes, in particular land-related processes, to understand the role of the land surface and its interaction with convection and radiation as well as the water and energy cycles in Indo-China/South China Sea (SCS)/China, North America and South America. The Penn State/NCAR MM5 atmospheric modeling system, a state of the art atmospheric numerical model designed to simulate regional weather and climate, has been successfully coupled to the Goddard Parameterization for Land-Atmosphere-Cloud Exchange (PLACE) land surface model, PLACE allows for the effect A vegetation, and thus important physical processes such as evapotranspiration and interception are included. The PLACE model incorporates vegetation type and has been shown in international comparisons to accurately predict evapotranspiration and runoff over a wide variety of land surfaces. The coupling of MM5 and PLACE creates a numerical modeling system with the potential to more realistically simulate the atmosphere and land surface processes including land-sea interaction, regional circulations such as monsoons, and flash flood events. RELACS has been used to simulate the onset of the South China Sea Monsoon in 1986, 1991 and 1998. Sensitivity tests on various land surface models, cumulus parameterization schemes (CPSs), sea surface temperature (SST) variations and midlatitude influences have been performed. These tests have indicated that the land surface model has a major impact on the circulation over the South China Sea. CPSs can effect the precipitation pattern while SST variation can effect the precipitation amounts over both land and ocean. RELACS has also been used to understand the soil-precipitation interaction and feedback associated with a flood event that occurred in and around China's Yantz River during 1998. The exact location (region) of the flooding can be effected by the soil-rainfall feedback. Also, the Goddard Cumulus Ensemble (GCE) model which allows for realistic moist processes as well as explicit interactions between cloud and radiation, and cloud and surface processes will be used to simulate convective systems associated with the onset of the South China Sea Monsoon in 1998. The GCE model also includes the same PLACE and radiation scheme used in the RELACS. A detailed comparison between the results from the GCE model and RELACS will be performed.
    Keywords: Meteorology and Climatology
    Type: Mar 11, 2001 - Mar 17, 2001; Chung-Li; Taiwan, Province of China
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-17
    Description: Tropical cyclone Paka formed during the first week of December 1997 and underwent three periods of rapid intensification over the following two weeks. During one of these periods, which initiated early on December 10, Paka's Dvorak-measured windspeed increased from 23 to 60 m/s over a 48-hr period. On December 18, during the last rapid deepening episode, Paka became a supertyphoon with a maximum wind speed of about 80 m/s. In this study, the Penn State/NCAR Mesoscale Model (MM5) with improved physics (i.e., cloud microphysics, radiation, land-soil-vegetation-surface processes, and TOGA COARE flux scheme) and a multiple level nesting technique (135, 45 and 15 km horizontal resolution) will be used to simulate supertyphoon Paka. We performed two runs initialized with Goddard Earth Observing System (GEOS) data sets. The first GEOS data set does not incorporate either TRMM (tropical rainfall measuring mission satellite) or SSM/I (sensor microwave imager) observed rainfall fields into the GEOS's assimilation system while the second one does. Preliminary results show that the MM5 simulated surface pressure deepened by more than 25 mb (45 km resolution domain) in the run initialized with the GEOS data set incorporating TRMM and SSM/I derived rainfall, compared to the one initialized without. However, the track and precipitation patterns are quite similar between the runs. In our presentation, we will show the impact of TRMM rainfall upon the MM5 simulation of Paka at various horizontal resolutions. We will also examine the physical processes associated with initial explosive development by comparing MM5 simulated rainfall and latent heat release. In addition, budget (vorticity, PV, momentum and heat) calculations and sensitivity tests will be performed to examine the upper-tropospheric and SST mechanisms responsible for the explosive development of Paka.
    Keywords: Meteorology and Climatology
    Type: Mesoscale Processes; Jun 28, 1999 - Jul 01, 1999; Boulder, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-17
    Description: The diurnal variation of precipitation processes over the tropics is a well-known phenomenon and has been studied using surface rainfall data, radar reflectivity data, and satellite-derived cloudiness and precipitation. Recently, Sui (1997) analyzed observations from TOGA COARE in the tropical western Pacific ocean to study the relevant mechanisms producing diurnal variation of precipitation. They found that the diurnal SST cycle is important for afternoon showers in the undisturbed periods and diurnal radiative processes for nocturnal rainfall. Takayabu (1996) found a quasi-2-day cycle in precipitation during TOGA COARE and they suggested that inertia-gravity waves may be associated with this 2-day cycle. Chen and Houze (1997), however, suggested that the quasi-2-day oscillation is mainly a function of the time required by the lower-tropospheric moisture field to recover from the drying caused by deep convection. In this study, the Penn State/NCAR Mesoscale Model (MM5) with improved physics (i.e., cloud microphysics, radiation, land-soil-vegetation-surface processes, and TOGA COARE flux scheme) and a multiple level nesting technique will be used to simulate two TOGA COARE convective espisodes, one convectively suppressed phase (mid to late January 1993) and one convectively active phase (mid to late December 1992). We will examine precipitation processes over the open ocean and over land by comparing MM5 simulated rainfall and out-going longwave radiation. By examining the OLR and precipitation, we can determine if there is a temporal lag between the maximum precipitation and the coldest upwelling longwave radiation (the time-lag between stratiform-cirrus and convective towers). The boundary layer response by (or recovery from) precipitation processes will also be shown by examining the PBL thermodynamic structure and the sensible and latent heat fluxes. A preliminary MM5 simulation showed a clear diurnal variation in rainfall over both land and open ocean for the convectively active phase. The results also indicated that a quasi-2-day cycle in precipitation was simulated only over part of the ocean.
    Keywords: Meteorology and Climatology
    Type: Hurricanes and Tropical Meteorology; Jan 10, 1999 - Jan 15, 1999; Dallas, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-17
    Description: Heavy rainfall occurred over the western side of Taiwan's complex terrain from August 10 to 13, 1994 after Typhoon Doug moved northward from the East China Sea into Taiwan and on towards the Yellow Sea. On August 10, most of the rainfall fell over sloped areas. The heaviest daily rainfall totals were in excess of 200 mm over southwestern as well as central Taiwan. However, not much rainfall occurred over northern Taiwan. The lack of rainfall over northern Taiwan also occurred on August 11, 12 and 13. The larger rainfall amounts shifted westward from the sloped areas on August 10 toward lower terrain on August 11. On August 12 and 13, most of the higher rainfall amounts were found over the coastal area in southwestern Taiwan. Notably, about 300 to 400 mm per day fell over the coastal area in southwest Taiwan on August 12 and 13. The distribution of rainfall amount was different on August 10 and 11 (termed as Case 1) compared to August 12 and 13 (termed as Case 2). The environmental situation and precipitation characteristics are analyzed using EC/TOGA data, ground-based radar data, surface rainfall patterns, surface wind data, and upper air soundings. Chen at al. (2001) also categorized the precipitation pattern into two types, propagating and quasi-stationary. For the propagating type of precipitation, rainrates increased or remained the same as systems went from the plains to mountainous regions. With the quasi-stationary type of precipitation, however, rainrates decreased as precipitation propagated across the plains and into the mountains. The focus of this study is to understand what causes the h1aher amounts of rainfall over Taiwan, and what factors influence where the higher amounts of rainfall will occur, over sloped areas or over coastal areas.
    Keywords: Meteorology and Climatology
    Type: MP-12 , MM5 Users Workshop; Jun 25, 2001 - Jun 27, 2001; Boulder, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-16
    Description: Several heavy precipitation episodes occurred over Taiwan from August 10 to 13, 1994. Precipitation patterns and characteristics are quite different between the precipitation events that occurred from August 10 and I I and from August 12 and 13. In Part I (Chen et al. 2001), the environmental situation and precipitation characteristics are analyzed using the EC/TOGA data, ground-based radar data, surface rainfall patterns, surface wind data, and upper air soundings. In this study (Part II), the Penn State/NCAR Mesoscale Model (MM5) is used to study the precipitation characteristics of these heavy precipitation events. Various physical processes (schemes) developed at NASA Goddard Space Flight Center (i.e., cloud microphysics scheme, radiative transfer model, and land-soil-vegetation surface model) have recently implemented into the MM5. These physical packages are described in the paper, Two way interactive nested grids are used with horizontal resolutions of 45, 15 and 5 km. The model results indicated that Cloud physics, land surface and radiation processes generally do not change the location (horizontal distribution) of heavy precipitation. The Goddard 3-class ice scheme produced more rainfall than the 2-class scheme. The Goddard multi-broad-band radiative transfer model reduced precipitation compared to a one-broad band (emissivity) radiation model. The Goddard land-soil-vegetation surface model also reduce the rainfall compared to a simple surface model in which the surface temperature is computed from a Surface energy budget following the "force-re store" method. However, model runs including all Goddard physical processes enhanced precipitation significantly for both cases. The results from these runs are in better agreement with observations. Despite improved simulations using different physical schemes, there are still some deficiencies in the model simulations. Some potential problems are discussed. Sensitivity tests (removing either terrain or radiative processes) are performed to identify the physical processes that determine the precipitation patterns and characteristics for heavy rainfall events. These sensitivity tests indicated that terrain can play a major role in determining the exact location for both precipitation events. The terrain can also play a major role in determining the intensity of precipitation for both events. However, it has a large impact on one event but a smaller one on the other. The radiative processes are also important for determining, the precipitation patterns for one case but. not the other. The radiative processes can also effect the total rainfall for both cases to different extents.
    Keywords: Meteorology and Climatology
    Type: Journal of the Meteorological Society of Japan; 1-37
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-17
    Description: The diurnal variation of precipitation processes over the tropics is a well-known phenomenon and has been studied using surface rainfall data, radar reflectivity data, and satellite-derived cloudiness and precipitation. Recently, analyzed observations from Tropical Oceans and Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE) in the tropical western Pacific ocean to study the relevant mechanisms producing diurnal variation of precipitation. They found that the diurnal Sea surface temperature (SST) cycle is important for afternoon showers in the undisturbed periods and diurnal radiative processes for nocturnal rainfall. Cloud resolving models (CRMS) have been used to determine the mechanisms associated with diurnal variation of precipitating processes. CRMs allow explicit cloud-radiation and air-sea interactive processes. However, CRMs can be only used for idealized simulations (i.e., no feedback between clouds and their embedded large-scale environments; cyclic lateral boundary conditions and idealized initial conditions). In this study, the Penn State/NCAR Mesoscale Model (MM5) with improved physics (i.e., cloud microphysics, radiation, land-soil-vegetation-surface processes, and TOGA COARE flux scheme) and a multiple level nesting technique (covers the TOGA COARE LSA/IFA with a 54 km grid and can nest down to 18, 6 and possibly even 2 km) will be adopted for studying the diurnal variations of rainfall. We will examine precipitation processes over open ocean and over land. We will also perform sensitivity tests to determine how the radiative forcing and diurnal SST cycle affects the development of convection.
    Keywords: Meteorology and Climatology
    Type: MM5 Workshop; Jun 23, 1999 - Jun 25, 1999; Boulder, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-14
    Description: Over the past decade, the Goddard Mesoscale Modeling and Dynamics Group has used a popular regional scale model, MM5, to study precipitation processes. Our group is making contributions to the MM5 by incorporating the following physical and numerical packages: improved Goddard cloud processes, a land processes model (Parameterization for Land-Atmosphere-Cloud Exchange - PLACE), efficient but sophisticated radiative processes, conservation of hydrometeor mass (water budget), four-dimensional data assimilation for rainfall, and better computational methods for trace gas transport. At NASA Goddard, the MM5 has been used to study: (1) the impact of initial conditions, assimilation of satellite-derived rainfall, and cumulus parameterizations on rapidly intensifying oceanic cyclones, hurricanes and typhoons, (2) the dynamic and thermodynamic processes associated with the development of narrow cold frontal rainbands, (3) regional climate and water cycles, (4) the impact of vertical transport by clouds and lightning on trace gas distributiodproduction associated with South and North American mesoscale convective systems, (5) the development of a westerly wind burst (WWB) that occurred during the TOGA COARE and the diurnal variation of precipitation in the tropics, (6) a Florida sea breeze convective event and a Mid-US flood event using a sophisticated land surface model, (7) the influence of soil heterogeneity on land surface energy balance in the southwest GCIP region, (8) explicit simulations (with 1.33 to 4 km horizontal resolution) of hurricanes Bob (1991) and Bonnie (1998), (9) a heavy precipitation event over Taiwan, and (10) to make real time forecasts for a major NASA field program. In this paper, the modifications and simulated cases will be described and discussed.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...