ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Meteorology and Climatology  (20)
Collection
  • 1
    Publication Date: 2019-07-19
    Description: In November 2006, AERONET released Version 2 of the Dubovik and King sky radiance and optical depth inversion. Reanalysis of the entire AERONET database revealed marked differences in aerosol properties in arid and semi arid regions with dust dominated aerosols. The change will be illustrated through sensitivity analysis and examples from the UAE2 (United Arab Emirates Unified Aerosol Experiment) field campaign. Properties of dust dominated aerosols will be presented from regional AERONET sites in China showing variations in dust aerosol properties. The constraints and limitations of the AERONET inversion will be presented that will facilitate analysis by the user community of these data.
    Keywords: Meteorology and Climatology
    Type: International Workshop on Semi-Arid Land Surface-Atmosphere Interaction; Aug 09, 2007 - Aug 13, 2007; Lanzhou; China
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: Aerosol is any small particle of matter that rests suspended in the atmosphere. Natural sources, such as deserts, create some aerosols; consumption of fossil fuels and industrial activity create other aerosols. All the microscopic aerosol particles add up to a large amount of material floating in the atmosphere. You can see the particles in the haze that floats over polluted cities. Beyond this visible effect, aerosols can actually lower temperatures. They do this by blocking, or scattering, a portion of the sun's energy from reaching the surface. Because of this influence, scientists study the physical properties of atmospheric aerosols. Reliable numerical models for atmospheric aerosols play an important role in research.
    Keywords: Meteorology and Climatology
    Type: 2000 NCCS Highlights: Enabling NASA Earth and Space Science; 38-45
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-06
    Description: In Asian monsoon countries, such as China and India, human health and safety problems caused by air pollution are becoming increasingly serious, due to the increased loading of atmospheric pollutants from waste gas emissions and from rising energy demand associated with the rapid pace of industrialization and modernization. Meanwhile, uneven distribution of monsoon rain associated with flash floods or prolonged drought, has caused major loss of human life and damage to crops and.property with devastating societal impacts. Historically, air-pollution and monsoons research are treated as separate problems. However recent studies have suggested that the two problems may be intrinsically linked and need to be studied jointly. Fundamentally, aerosols can affect precipitation through radiative effects cif suspended particles in the atmosphere (direct effect) and/or by interfering and changing: the cloud and precipitation formation processes (indirect effect). Based on their optical properties, aerosols can be classified into two types.: those that absorb solar radiation, and those that do not. Both types of aerosols scatter sunlight and reduce the amount of solar radiation from reaching the Earth's surface, causing it to cool. The surface cooling increases atmospheric stability and reduces convection potential, Absorbing aerosols, however, in addition to cooling the surface, can heat the atmosphere. The heating of the atmosphere may reduce the amount of low clouds by increased evaporation in cloud drops. The heating, however, may induce rising motion, enhance low-level moisture, convergence and, hence, increases rainfall, The latent heating from enhanced rainfall may excite feedback processes in the large-scale circulation, further amplify.the initial response to aerosol heating and producing more rain. Additionally, aerosols can increase the concentration of cloud condensation nuclei (CCN), increase cloud amount and decrease coalescence and collision rates, leading to reduced precipitation. However, in the presence of increasing moist and warm air, the reduced coalescence/collision may lead to supercooled drops at higher altitudes where ice precipitation falls and melts. The latent heat release from freezing aloft and melting below implies greater upward heat transport in polluted clouds and invigorate deep convection. In this way, aerosols may lead to increased local convection. Hence, depending on the ambient large-scale conditions and dynamical feedback processes, aerosols' effect on precipitation can be positive, negative or mixed. In the Asian monsoon and adjacent regions, the aerosol forcing and responses of the water cycle are even more complex, Both direct and indirect effects may take place locally and simultaneously, interacting with each other. in addition to local effects, monsoon rainfall may be affected by aerosols transported from other regions and intensified through large-scale circulation and moisture feedback. Thus, dust transported by the large-scale circulation from the adjacent deserts to northern India may affect rainfall over the Bay of Bengal; sulphate and black carbon front industrial pollution in central, southern China and northern India may affect the rainfall regime over the Korean peninsula and Japan; organic and black carbon front biomass burning from Indo-China may modulate the pre-monsoon rainfall regime over southern China and coastal regions, contributing to variability in differential heating and cooling of the atmosphere and to the land-sea thermal contrast. During the pre-monsoon season and monsoon breaks, it has been suggested that radiative forcing by absorbing aerosols have nearly the same order of magnitude as the forcing due to latent heating from convection and surface fluxes. The magnitude of the total aerosol radiative cooling due to sulphates and soot is of the order of 20-40 W/m2 over the Asian monsoon land region in the pre-monsoon season, compared to about 1-2 W/m2 for global warng. However, the combined forcing at the surface and in the atmosphere, including all species. if aerosols, and details of aerosol mixing, and impacts on the energy and water cycles in the monsoon land regions, are not well known.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: From radiometric principles, it is expected that the retrieved properties of extensive aerosols and clouds from reflected/emitted measurements by satellite (and/or aircraft) should be consistent with those retrieved from transmitted/emitted radiance observed at the surface. Although space-borne remote sensing observations contain large spatial domain, they are often plagued by contamination of surface signatures. Thus, ground-based in-situ and remote-sensing measurements, where signals come directly from atmospheric constituents, the sun, and the Earth-atmosphere interactions, provide additional information content for comparisons that confirm quantitatively the usefulness of the integrated surface, aircraft, and satellite datasets. The development and deployment of AERONET (AErosol RObotic NETwork) sunphotometer network and SMART-COMMIT (Surface-sensing Measurements for Atmospheric Radiative Transfer - Chemical, Optical & Microphysical Measurements of In-situ Troposphere) mobile supersite are aimed for the optimal utilization of collocated ground-based observations as constraints to yield higher fidelity satellite retrievals and to determine any sampling bias due to target conditions. To characterize the regional natural and anthropogenic aerosols, AERONET is an internationally federated network of unique sunphotometry that contains more than 250 permanent sites worldwide. Since 1993, there are more than 480 million aerosol optical depth observations and about 15 sites have continuous records longer than 10 years for annual/seasonal trend analyses. To quantify the energetics of the surface-atmosphere system and the atmospheric processes, SMART-COMMIT instrument into three categories: flux radiometer, radiance sensor and in-situ probe. Through participation in many satellite remote-sensing/retrieval and validation projects over eight years, SMART-COMMIT have gradually refine( and been proven vital for field deployment. In this paper, we will demonstrate the capability of AERONET SMART-COMMIT in current Asian Monsoon Year-2008 campaigns that are designed and being executed to study the compelling variability in temporal scale of both anthropogenic and natural aerosols (e.g., airborne dust, smoke, mega-city pollutant). Feedback mechanisms between aerosol radiative effects and monsoon dynamics have been recently proposed, however there is a lack of consensus on whether aerosol forcing would be more likely to enhance or reduce the strength of the monsoon circulation. We envision robust approaches which well-collocated ground-based measurements and space-borne observations will greatly advance our understanding of absorbing aerosols (e.g., "Global Dimming" vs. "Elevated Heat-Pump" effects) on aerosol cloud water cycle interactions.
    Keywords: Meteorology and Climatology
    Type: From Deserts to Monsoons: Aerosols and Their Impacts at Regional and Global Scales; Jun 01, 2008 - Jun 06, 2008; Crete; Greece
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-18
    Description: Aerosol absorption in the atmosphere poses a major uncertainty in assessing the aerosol climate effects. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, and our limited knowledge of aerosol mixing state and optical properties. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt. We compare the model calculated total aerosol optical thickness, extinction, and absorption with those quantities from the ground-based sun photometer measurements from AERONET at several different wavelengths and the field observations from ACE-Asia. We will examine the most sensitive factors in determining the aerosol absorption, and the consequences of assessing the aerosol radiative forcing and atmospheric heating associated with those factors.
    Keywords: Meteorology and Climatology
    Type: AeroCom Workshop; Mar 10, 2004 - Mar 12, 2004; Ispra; Italy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-18
    Description: The Atmospheric Radiation Measurement program studied water vapor abundance measurement at its southern Great Plains site in the fall of 1997. The program used a large number of instruments, including four solar radiometers. By measuring solar transmittance in the 0.94 micrometer water apor absorption band, they were able to measure columnar water vapor (CWV). In the second round of comparison we used the same radiative transfer model, and the same line-by-line code (which includes recently corrected H2O spectroscopy) to retrieve CWV from all four solar radiometers, thus decreasing the mean CWV by 8 - 13 %. The model was not responsible for the 8 % spread in CWV which remained.
    Keywords: Meteorology and Climatology
    Type: Applied Optics; 40; 12
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Aerosols are tiny atmospheric particles that are emitted from various natural and anthropogenic sources. They affect climate through direct and indirect interactions with solar and thermal radiation, clouds, and atmospheric circulation (Solomon et al. 2007). The launch of a variety of sophisticated satellite-based observing systems aboard the Terra, Aqua, Aura, SeaWiFS (see appendix for all acronym expansions), CALIPSO, and other satellites in the late 1990s to mid-2000s through the NASA EOS and other U.S. and non-U.S. programs ushered in a golden era in aerosol research. NASA has been a leader in providing global aerosol characterizations through observations from satellites, ground networks, and field campaigns, as well as from global and regional modeling. AeroCenter (http://aerocenter.gsfc.nasa.gov/), which was formed in 2002 to address the many facets of aerosol research in a collaborative manner, is an interdisciplinary union of researchers (~200 members) at NASA GSFC and other nearby institutions, including NOAA, several universities, and research laboratories. AeroCenter hosts a web-accessible regular seminar series and an annual meeting to present up-to-date aerosol research, including measurement techniques; remote sensing algorithms; modeling development; field campaigns; and aerosol interactions with radiation, clouds, precipitation, climate, biosphere, atmospheric chemistry, air quality, and human health. The 2013 annual meeting was held at the NASA GSFC Visitor Center on 31 May 2013, which coincided with the seventh anniversary of the passing of Yoram Kaufman, a modern pioneer in satellite-based aerosol science and the founder of AeroCenter. The central theme of this year's meeting was "current and future perspectives" of NASA's aerosol science and satellite missions.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN32716 , BAMS; 95; 10; ES203-ES207
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-18
    Description: In the early 1990s, the first small, eye-safe, and autonomous lidar system was developed, the Micropulse Lidar (MPL). The MPL acquires signal profiles of backscattered laser light from aerosols and clouds. The signals are analyzed to yield multiple layer heights, optical depths of each layer, average extinction-to-backscatter ratios for each layer, and profiles of extinction in each layer. In 2000, several MPL sites were organized into a coordinated network, called MPL-Net, by the Cloud and Aerosol Lidar Group at NASA Goddard Space Flight Center (GSFC) using funding provided by the NASA Earth Observing System. tn addition to the funding provided by NASA EOS, the NASA CERES Ground Validation Group supplied four MPL systems to the project, and the NASA TOMS group contributed their MPL for work at GSFC. The Atmospheric Radiation Measurement Program (ARM) also agreed to make their data available to the MPL-Net project for processing. In addition to the initial NASA and ARM operated sites, several other independent research groups have also expressed interest in joining the network using their own instruments. Finally, a limited amount of EOS funding was set aside to participate in various field experiments each year. The NASA Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) project also provides funds to deploy their MPL during ocean research cruises. All together, the MPL-Net project has participated in four major field experiments since 2000. Most MPL-Net sites and field experiment locations are also co-located with sunphotometers in the NASA Aerosol Robotic Network. (AERONET). Therefore, at these locations data is collected on both aerosol and cloud vertical structure as well as column optical depth and sky radiance. Real-time data products are now available from most MPL-Net sites. Our real-time products are generated at times of AERONET aerosol optical depth (AOD) measurements. The AERONET AOD is used as input to our processing routines, which calculate the aerosol layer top height and extinction profile, and our MPL calibration value. A variety of other data products are available or under development. We present an overview of the MPL-Net project and discuss data products useful to the AERONET community. Results from several sites and field experiments will be presented.
    Keywords: Meteorology and Climatology
    Type: 2002 Spring AGU Meeting; May 28, 2002 - May 31, 2002; Washington, DC; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-18
    Description: Aerosol absorption in the atmosphere poses a major uncertainty in assessing the aerosol climate effects. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, and our limited knowledge of aerosol mixing state and optical properties. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt. We compare the model calculated total aerosol optical thickness, extinction, and absorption with those quantities from the ground-based sun photometer measurements from AERONET at several different wavelengths and the field observations from ACE-Asia. We will examine what are the most sensitive factors in determining the aerosol absorption, and the consequences of assessing the aerosol radiative forcing and atmospheric heating associated with those factors.
    Keywords: Meteorology and Climatology
    Type: EGS-AGU-EUG Joint Assembly 2003; Apr 07, 2003 - Apr 11, 2003; Nice; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-17
    Description: Aerosols are extremely important for global climate studies and modeling in the quest to characterize the global radiation budget and forcing. The physical characteristics, composition, abundance, and spatial distribution and dynamics of aerosols are still very poorly known. Aerosol column optical thickness and other parameters as well as column precipitable water vapor amount are some of the main atmospheric parameters retrieved from the MODIS instrument on board the Terra satellite. To ensure the reliability of these parameters, we have embarked on a very massive validation effort. This involves cross correlation between the retrievals from the satellite data and those obtained from sunphotometer measurements at a large number of ground stations spread throughout the globe. Notable among these ground stations is a large network of over 100 stations coordinated under the Aerosol Robotic Network (AERONET) project. Whereas MODIS retrieves the aerosol parameters throughout the globe once or twice a day during the daytime, the ground measurements cover only discrete locations of the earth, though the retrievals are done several times a day. We have devised a method to. match the MODIS and ground retrievals through spatial statistics for the MODIS data and temporal statistics for the ground data. This has produced good comparisons and has enabled the validation of MODIS aerosol and water vapor retrievals at over 100 discrete locations in various parts of the earth both over the land and over the ocean. Currently, the validation statistical data is produced routinely by the MODIS aerosol group and is even available not only for validation but also for use by the science community for short and long term studies at various parts of the earth. One important advantage is that the system can be expanded to incorporate more locations where ground measurements and other studies may be conducted at any time during the lifetime of MODIS.
    Keywords: Meteorology and Climatology
    Type: IGARSS Meeting; Jul 09, 2001 - Jul 13, 2001; Sydney; Australia
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...