ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2004-12-03
    Description: Severe storms often have high flash rates (in excess of one flash per second) and are dominated by intracloud lightning activity. In addition to the extraordinary flash rates, there is a second distinguishing lightning characteristic of severe storms that seems to be important. When the total lightning history is examined, one finds sudden increases in the lightning rate, which we refer to as lightning "jumps," that precede the occurrence of severe weather by ten or more minutes. These jumps are typically 30-60 flashes/min, and are easily identified as anomalously large derivatives in the flash rate. This relationship is associated with updraft intensification and updraft strength is an important factor in storm severity (through the accumulation of condensate aloft and the stretching of vorticity). In several cases, evidence for diminishment of midlevel rotation and the descent of angular momentum from aloft is present prior to the appearance of the surface tornado. Based on our experience with severe and tornadic storms in Central Florida, we believe the total lightning may augment the more traditional use of NEXRAD radars and storm spotters. However, a more rigorous relation of these jumps to storm kinematics is needed if we are to apply total lightning in a decision tree that leads to improved warning lead times and decreased false alarm rates.
    Keywords: Meteorology and Climatology
    Type: 11th International Conference on Atmospheric Electricity; 515-518; NASA/CP-1999-209261
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-12-03
    Description: The Lightning Imaging Sensor (LIS) is a NASA Earth Observing System (EOS) instrument on the Tropical Rainfall Measuring Mission (TRMM) platform designed to acquire and investigate the distribution and variability of total lightning (i.e., cloud-to-ground and intracloud) between q35' in latitude. Since lightning is one of the responses of the atmosphere to thermodynamic and dynamic forcing, the LIS data is being used to detect deep convection without land-ocean bias, estimate the precipitation mass in the mixed phased region of thunderclouds, and differentiate storms with strong updrafts from those with weak vertical motion.
    Keywords: Meteorology and Climatology
    Type: 11th International Conference on Atmospheric Electricity; 746-749; NASA/CP-1999-209261
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-12-03
    Description: The Optical Transient Detector (OTD) is a space-based instrument specifically designed to detect and locate lightning discharges (intracloud and cloud-to-ground) as it orbits the Earth. A statistical examination of OTD lightning data reveals that nearly 1.2 billion flashes occurred over the entire earth during the one year period from September 1995 through August 1996. This translates to an average of 37 lightning flashes occurring around the globe every second, which is well below the traditional estimate of 100 flashes per second. An average of 75% of the global lightning activity during the year occurs between 30' S and 30' N. An analysis of the annual lightning distribution reveals that an average of 82% of the lightning flashes occur over the continents and 18% over the oceans, which translates to an average land-ocean flash density ratio of nearly 11.
    Keywords: Meteorology and Climatology
    Type: 11th International Conference on Atmospheric Electricity; 726-729; NASA/CP-1999-209261
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-12-03
    Description: It is well known that most tropical cyclones (TCs) that make landfall along the Gulf coast of the United States spawn at least a few tornadoes. Although most landfalling TCs generate fewer than a dozen such tornadoes, a small proportion produce large swarm outbreaks, with as many as 25 or more tornadoes. Usually, these major outbreaks occur in large, intense hurricane-strength TCs, but on 15-17 August 1994 Tropical Storm Beryl spun off 37 tornadoes along its path from the Florida panhandle through the mid-Atlantic states. Some 32 of these tornadoes occurred on 16 August 1994 from eastern Georgia to southern Virginia, with most of these taking place in South Carolina. Beryl's 37 tornadoes moved it into what was at that time fifth place historically in terms of TC tornado productivity. The Beryl outbreak is especially noteworthy in that at least three of the tornadoes achieved peak intensity of F3 on the Fujita damage intensity scale. Although no fatalities resulted from the Beryl outbreak, at least 50 persons suffered injuries, and property damages totalled more than $50 million . The Beryl outbreak is a good example of a TC whose greatest danger to the public is its post-landfall severe weather. In this respect, and in the character of its swarm outbreak of tornadoes, it resembles another large tornado outbreak spawned by a relatively weak TC, Hurricane Danny of 1985). In the Danny outbreak, numerous shallow mini-supercell storms were found to have occurred, and it was noted that, because of the storms' relatively shallow depth, cloud-to-ground (CG) lightning was negligible. Better observations of future TC tornado outbreaks, especially with modern surveillance tools such as Doppler radars and the National Lightning Detection Network (NLDN), were recommended. Although the Beryl tornado outbreak is not the first set of TC-spawned tornado storms to be observed with the NLDN, it is one of the largest and likely the most intense such outbreak. The purpose of this paper is to document the NLDN-derived CG lightning characteristics of Beryl's tornadic storms, and to see how they compare with observations of CG lightning activity in other types of severe storms. In particular, we attempt to quantify the CG flash rates of TC tornadic cells, and to discover if there are any characteristics of their CG activity that may be useful to operational forecasters seeking to distinguish which cells are most likely to produce severe weather.
    Keywords: Meteorology and Climatology
    Type: 11th International Conference on Atmospheric Electricity; 511-514; NASA/CP-1999-209261
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-12-03
    Description: Since April 1995, lightning activity around the globe has been monitored with the Optical Transient Detector (OTD). The OTD observations acquired during the one year period from September 1995 through August 1996 have been used to statistically determine the number of flashes that occur over the Earth during each hour of the diurnal cycle, expressed both as a function of local time and universal time. The globally averaged local [il,htnina activity displays a peak in late afternoon (1500-1800 local time) and a minimum in the morning hours (0600- 1000 local time) consistent with convection associated with diurnal heating. No diurnal variation is found for oceanic storms. The diurnal lightning distribution (universal time) for the globe displays a variation of about 35% about its mean as compared to the Carnegie curve which has a variation of only 15% above and below the mean.
    Keywords: Meteorology and Climatology
    Type: 11th International Conference on Atmospheric Electricity; 742-745; NASA/CP-1999-209261
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-08-29
    Description: Recognizing the importance of rain in the tropics and the accompanying latent heat release, NASA for the U.S. and NASDA for Japan have partnered in the design, construction and flight of an Earth Probe satellite to measure tropical rainfall and calculate the associated heating. Primary mission goals are: 1) the understanding of crucial links in climate variability by the hydrological cycle, 2) improvement in the large-scale models of weather and climate, and 3) improvement in understanding cloud ensembles and their impacts on larger scale circulations. The linkage with the tropical oceans and landmasses are also emphasized. The Tropical Rainfall Measuring Mission (TRMM) satellite was launched in November 1997 with fuel enough to obtain a four to five year data set of rainfall over the global tropics from 37 deg N to 37 deg S. This paper reports progress from launch date through the spring of 1999. The data system and its products and their access is described, as are the algorithms used to obtain the data. Some exciting early results from TRMM are described. Some important algorithm improvements are shown. These will be used in the first total data reprocessing, scheduled to be complete in early 2000. The reader is given information on how to access and use the data.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-12
    Description: During its first three years, the Tropical Rainfall Measuring Mission (TRMM) satellite observed nearly six million precipitation features. The population of precipitation features is sorted by lightning flash rate, minimum brightness temperature, maximum radar reflectivity. areal extent, and volumetric rainfall. For each of these characteristics, essentially describing the convective intensity or the size of the features, the population is broken into categories consisting of the top 0.001%, top 0.01%, top 0.1%, top 1%, top 2.4%. and remaining 97.6%. The set of weakest/smallest features composes 97.6% of the population because that fraction does not have detected lightning, with a minimum detectable flash rate of 0.7 flashes (fl) per minute. The greatest observed flash rate is 1351 fl per minute; the lowest brightness temperatures are 42 K (85 GHz) and 69 K (37 GHz). The largest precipitation feature covers 335 000 square kilometers and the greatest rainfall from an individual precipitation feature exceeds 2 x 10 kg per hour of water. There is considerable overlap between the greatest storms according to different measures of convective intensity. The largest storms are mostly independent of the most intense storms. The set of storms producing the most rainfall is a convolution of the largest and the most intense storms. This analysis is a composite of the global Tropics and subtropics. Significant variability is known to exist between locations. seasons, and meteorological regimes. Such variability will be examined in Part II. In Part I, only a crude land-ocean separation is made. The known differences in bulk lightning flash rates over land and ocean result from at least two differences in the precipitation feature population: the frequency of occurrence of intense storms and the magnitude of those intense storms that do occur. Even when restricted to storms with the same brightness temperature, same size, or same radar reflectivity aloft, the storms over water are considerably less likely to produce lightning than are comparable storms over land.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-12
    Description: The recently reprocessed (1997-2006) OTD/LIS database is used to investigate the global lightning climatology in response to the ENSO cycle. A linear correlation map between lightning anomalies and ENSO (NINO3.4) identifies areas that generally follow patterns similar to precipitation anomalies. We also observed areas where significant lightning/ENSO correlations are found and are not accompanied of significant precipitation/ENSO correlations. An extreme case of the strong decoupling between lightning and precipitation is observed over the Indonesian peninsula (Sumatra) where positive lightning/NINO3.4 correlations are collocated with negative precipitation/NINO3.4 correlations. Evidence of linear relationships between the spatial extent of thunderstorm distribution and the respective NINO3.4 magnitude are presented for different regions on the Earth. Strong coupling is found over areas remote to the main ENSO axis of influence and both during warm and cold ENSO phases. Most of the resulted relationships agree with the tendencies of precipitation related to ENSO empirical maps or documented teleconnection patterns. Over the Australian continent, opposite behavior in terms of thunderstorm activity is noted for warm ENSO phases with NINO3.4 magnitudes with NINO3.4〉+l.08 and 0〈NqNO3.4〈I.08. Finally, we investigate the spatial distribution of areas that consistently portrayed enhanced lightning activity during the main warm/cold (El Nino/La Nina) ENSO episodes of the past decade. The observed patterns show no spatial overlapping and identify areas that in their majority are in agreement with empirical precipitation/ENSO maps. The areas that appear during the warm ENSO phase are found over regions that have been identified as anomalous Hadley circulation ENSO-related patterns. The areas that appear during the cold ENSO phase are found predominantly around the west hemisphere equatorial belt and are in their majority identified by anomalous Walker circulation.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-12
    Description: Data from a single Weather Surveillance Radar-1988 Doppler (WSR-88D) and the National Lightning Detection Network are used to examine the characteristics of the convective storms that produced a severe tornado outbreak, including three tornadoes that reached F3 intensity, within Tropical Storm Beryl s remnants on 16 August 1994. Comparison of the radar data with reports of tornadoes suggests that only 13 cells produced the 29 tornadoes that were documented in Georgia and the Carolinas on that date. Six of these cells spawned multiple tornadoes, and the radar data confirm the presence of miniature supercells. One of the cells was identifiable on radar for 11 h. spawning tornadoes over a time period spanning approximately 6.5 h. Several other tornadic cells also exhibited great longevity, with cell lifetimes longer than ever previously documented in a landfalling tropical cyclone (TC) tornado event. This event is easily the most intense TC tornado outbreak yet documented with WSR-88Ds. Time-height analyses of the three strongest tornadic supercells are presented in order to document storm kinematic structure and to show how these storms appear at different ranges from a WSR-88D. In addition, cloud-to-ground (CG) lightning data are examined in Beryl s remnants. Although the tornadic cells were responsible for most of Beryl's CG lightning, their flash rates were only weak to moderate, and in all the tornadic storms the lightning flashes were almost entirely negative in polarity. A few of the single-tornado storms produced no detectable CG lightning at all. There is evidence that CG lightning rates decreased during the tornadoes, compared to 30-min periods before the tornadoes. A number of the storms spawned tornadoes just after producing their final CG lightning flashes. Contrary to the findings for flash rates, both peak currents and positive flash percentages were larger in Beryl's nontornadic storms than in the tornadic ones.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-12
    Description: During its first three years, the Tropical Rainfall Measuring Mission (TRMM) satellite observed nearly six million precipitation features. The population of precipitation features is sorted by lightning flash rate, minimum brightness temperature, maximum radar reflectivity, areal extent, and volumetric rainfall. For each of these characteristics, essentially describing the convective intensity or the size of the features, the population is broken into categories consisting of the top 0.001%, top 0.01%, top 0.1%, top 1%, top 2.4%, and remaining 97.6%. The set of 'weakest / smallest' features comprises 97.6% of the population because that fraction does not have detected lightning, with a minimum detectable flash rate 0.7 fl/min. The greatest observed flash rate is 1351 fl/min; the lowest brightness temperatures are 42 K (85-GHz) and 69 K (37- GHz). The largest precipitation feature covers 335,000 sq km and the greatest rainfall from an individual precipitation feature exceeds 2 x 10(exp 12) kg of water. There is considerable overlap between the greatest storms according to different measures of convective intensity. The largest storms are mostly independent of the most intense storms. The set of storms producing the most rainfall is a convolution of the largest and the most intense storms. This analysis is a composite of the global tropics and subtropics. Significant variability is known to exist between locations, seasons, and meteorological regimes. Such variability will be examined in Part II. In Part I, only a crude land / Ocean separation is made. The known differences in bulk lightning flash rates over land and Ocean result from at least two differences in the precipitation feature population: the frequency of occurrence of intense storms, and the magnitude of those intense storms that do occur. Even when restricted to storms with the same brightness temperature, same size, or same radar reflectivity aloft, the storms over water are considerably less likely to produce lightning than are comparable storms over land.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...