ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Meteorology and Climatology  (4)
  • 1
    Publication Date: 2013-08-29
    Description: This is the first of a two part study examining the connection of the equatorial momentum budget in an AGCM (Atmospheric General Circulation Model), with simulated equatorial surface wind stresses over the Pacific. The AGCM used in this study forms part of a newly developed coupled forecasting system used at NASA's Seasonal- to-Interannual Prediction Project. Here we describe the model and present results from a 20-year (1979-1999) AMIP-type experiment forced with observed SSTs (Sea Surface Temperatures). Model results are compared them with available observational data sets. The climatological pattern of extra-tropical planetary waves as well as their ENSO-related variability is found to agree quite well with re-analysis estimates. The model's surface wind stress is examined in detail, and reveals a reasonable overall simulation of seasonal interannual variability, as well as seasonal mean distributions. However, an excessive annual oscillation in wind stress over the equatorial central Pacific is found. We examine the model's divergent circulation over the tropical Pacific and compare it with estimates based on re-analysis data. These comparisons are generally good, but reveal excessive upper-level convergence in the central Pacific. In Part II of this study a direct examination of individual terms in the AGCM's momentum budget is presented. We relate the results of this analysis to the model's simulation of surface wind stress.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-06
    Description: This study provides explanations for some of the experimental findings of Chao (2000) and Chao and Chen (2001) concerning the mechanisms responsible for the ITCZ in an aqua-planet model. These explanations are then applied to explain the origin of some of the systematic errors in the GCM simulation of ITCZ precipitatin over oceans. The ITCZ systematic errors are highly sensitive to model physics and by extension model horizontal resolution. The findings in this study along with those of Chao (2000) and Chao and Chen (2001, 2004) contribute to building a theoretical foundation for ITCZ study. A few possible methods of alleviating the systematic errors in the GCM simulaiton of ITCZ are discussed. This study uses a recent version of the Goddard Modeling and Assimilation Office's Goddard Earth Observing System (GEOS-5) GCM.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-06
    Description: Sensitivity experiments with an atmospheric general circulation model (AGCM) show that parameterized rain re-evaporation has a large impact on simulated precipitation patterns in the tropical Pacific, especially on the configuration of the model s intertropical convergence zone (ITCZ). Weak re-evaporation leads t o the formation of a "double ITCZ" during the northern warm season. The double ITCZ is accompanied by strong coupling between precipitation and high-frequency vertical motion in the planetary boundary layer (PBL). Strong reevaporation leads to a better overall agreement of simulated precipitation with observations. The model s double ITCZ bias is reduced. At the same time, correlation between high-frequency vertical motion in the PBL and precipitation is reduced. Experiments with modified physics suggest that evaporative cooling by rain near the PBL top weakens the coupling between precipitation and vertical motion. This may reduce the model s tendency to form double ITCZs. The strength of high-frequency vertical motions in the PBL was also reduced directly through the introduction of a diffusive cumulus momentum transport (DCMT) parameterization. The DCMT had a visible impact on simulated precipitation in the tropics, but did not reduce the model s double bias in all cases.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-06
    Description: The 1930s was characterized by a decade of rainfall deficits and high temperatures that desiccated much of the United States Great Plains. Numerous dust storms created one of the most severe environmental catastrophes in U.S. history and led to the popular characterization of much of the southern Great Plains as the Dust Bowl . In this study, we show that the origin of the drought was in the anomalous tropical sea surface temperatures that occurred during that decade. We further show that interactions between the atmosphere and the land surface were essential to the development of the severe drought conditions. The results are based on simulations with the NASA Seasonal-to-Interannual Prediction Project general circulation model forced with observed and idealized sea surface temperatures. We contrast the 1930s drought with other major droughts of the 20th century, and speculate on the possibility of another Dust Bowl developing in the foreseeable future.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...