ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (8)
  • Meteorology and Climatology  (6)
  • ELECTRONICS AND ELECTRICAL ENGINEERING  (2)
  • 1
    Publication Date: 2019-07-13
    Description: Climate and environments of the mid-Pliocene warm period (3.264 to 3.025 Ma) have been extensively studied.Whilst numerical models have shed light on the nature of climate at the time, uncertainties in their predictions have not been systematically examined. The Pliocene Model Intercomparison Project quantifies uncertainties in model outputs through a coordinated multi-model and multi-mode data intercomparison. Whilst commonalities in model outputs for the Pliocene are clearly evident, we show substantial variation in the sensitivity of models to the implementation of Pliocene boundary conditions. Models appear able to reproduce many regional changes in temperature reconstructed from geological proxies. However, data model comparison highlights that models potentially underestimate polar amplification. To assert this conclusion with greater confidence, limitations in the time-averaged proxy data currently available must be addressed. Furthermore, sensitivity tests exploring the known unknowns in modelling Pliocene climate specifically relevant to the high latitudes are essential (e.g. palaeogeography, gateways, orbital forcing and trace gasses). Estimates of longer-term sensitivity to CO2 (also known as Earth System Sensitivity; ESS), support previous work suggesting that ESS is greater than Climate Sensitivity (CS), and suggest that the ratio of ESS to CS is between 1 and 2, with a "best" estimate of 1.5.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN15069 , Climate of the Past; 9; 191-209
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: Previous millimeter-wave radiometry for water vapor profiling, by either airborne or satellite sensors, has been limited to frequencies less than or equal to 183 GHz. The retrievals are generally limited to an altitude range of 0-10 km. The additional measurements at the frequencies of 380.2 plus or minus 0.8, 380.2 plus or minus 1.8, 380.2 plus or minus 3.3, and 380.2 plus or minus 6.2 GHz provided by the new airborne Compact Scanning Submillimeter-wave Imaging Radiometer (CoSSIR) can extend this profiling capability up to an altitude of about 15 km. Furthermore, the retrievals can be performed over both land and water surfaces in the tropics without much difficulty. These properties are demonstrated by recent CoSSIR measurements on board the NASA WB-57 aircraft during CR-AVE in January 2006. Retrievals of water vapor mixing ratio were performed at eight altitude levels of 1, 3, 5, 7, 9, 11, 13, and 15 km from CoSSIR data sets acquired at observational angles of 0 and 53.4 degrees, and the results were compared with other available measurements from the same aircraft and near-concurrent satellites. A comparison of the variations of mixing ratios retrieved from CoSSIR and those derived from the Meteorological Measurement System (MMS) in the aircraft vicinity, along the path of the transit flight on January 14, 2006, appears to show some connection, although the measurements were referring to different altitudes. A very good agreement was found between the collocated values of total precipitable water derived from the CoSSIR-retrieved water vapor profiles and those estimated from TMI (TRMM Microwave Imager)
    Keywords: Meteorology and Climatology
    Type: American Geophysical Union (AGU) Fall Meeting; Dec 11, 2006 - Dec 16, 2006; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: A new architecture is presented for a multibit oversampled Sigma-Delta A/D convertor. A novel feedback arrangement is employed to reduce the sensitivity of the overall resolution to the nonlinearity of the multibit DAC. Simulations confirm the improved performance achieved by the proposed structure.
    Keywords: ELECTRONICS AND ELECTRICAL ENGINEERING
    Type: Electronics Letters (ISSN 0013-5194); 27; 990
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: Nonuniformly quantized multibit oversampled Sigma-Delta A/D convertors are proposed which achieve high SNR over a wide dynamic range. Simulation results are presented for first- and second-order 4 bit Sigma-Delta A/D convertors with companding internal quantizers.
    Keywords: ELECTRONICS AND ELECTRICAL ENGINEERING
    Type: Electronics Letters (ISSN 0013-5194); 27; 528
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The bispectral method retrieves cloud optical thickness () and cloud droplet effective radius (re) simultaneously from a pair of cloud reflectance observations, one in a visible or near-infrared (VIS/NIR) band and the other in a shortwave infrared (SWIR) band. A cloudy pixel is usually assumed to be horizontally homogeneous in the retrieval. Ignoring subpixel variations of cloud reflectances can lead to a significant bias in the retrieved and re. In the literature, the retrievals of and re are often assumed to be independent and considered separately when investigating the impact of subpixel cloud reflectance variations on the bispectral method. As a result, the impact on is contributed only by the subpixel variation of VIS/NIR band reflectance and the impact on re only by the subpixel variation of SWIR band reflectance. In our new framework, we use the Taylor expansion of a two-variable function to understand and quantify the impacts of subpixel variances of VIS/NIR and SWIR cloud reflectances and their covariance on the and re retrievals. This framework takes into account the fact that the retrievals are determined by both VIS/NIR and SWIR band observations in a mutually dependent way. In comparison with previous studies, it provides a more comprehensive understanding of how subpixel cloud reflectance variations impact the and re retrievals based on the bispectral method. In particular, our framework provides a mathematical explanation of how the subpixel variation in VIS/NIR band influences the re retrieval and why it can sometimes outweigh the influence of variations in the SWIR band and dominate the error in re retrievals, leading to a potential contribution of positive bias to the re retrieval. We test our framework using synthetic cloud fields from a large-eddy simulation and real observations from Moderate Resolution Imaging Spectroradiometer. The predicted results based on our framework agree very well with the numerical simulations. Our framework can be used to estimate the retrieval uncertainty from subpixel reflectance variations in operational satellite cloud products and to help understand the differences in and re retrievals between two instruments.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN33749 , Journal of Geophysical Research: Atmospheres; 121; 12; 7007-7025
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The Pliocene Model Intercomparison Project (PlioMIP) is the first coordinated climate model comparison for a warmer palaeoclimate with atmospheric CO2 significantly higher than pre-industrial concentrations. The simulations of the mid-Pliocene warm period show global warming of between 1.8 and 3.6 C above pre-industrial surface air temperatures, with significant polar amplification. Here we perform energy balance calculations on all eight of the coupled ocean-atmosphere simulations within PlioMIP Experiment 2 to evaluate the causes of the increased temperatures and differences between the models. In the tropics simulated warming is dominated by greenhouse gas increases, with the cloud component of planetary albedo enhancing the warming in most of the models, but by widely varying amounts. The responses to mid-Pliocene climate forcing in the Northern Hemisphere midlatitudes are substantially different between the climate models, with the only consistent response being a warming due to increased greenhouse gases. In the high latitudes all the energy balance components become important, but the dominant warming influence comes from the clear sky albedo, only partially offset by the increases in the cooling impact of cloud albedo. This demonstrates the importance of specified ice sheet and high latitude vegetation boundary conditions and simulated sea ice and snow albedo feedbacks. The largest components in the overall uncertainty are associated with clouds in the tropics and polar clear sky albedo, particularly in sea ice regions. These simulations show that albedo feedbacks, particularly those of sea ice and ice sheets, provide the most significant enhancements to high latitude warming in the Pliocene.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN17387 , Climate of the Past; 10; 79-90
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: In the Pliocene Model Intercomparison Project (PlioMIP), eight state-of-the-art coupled climate models have simulated the mid-Pliocene warm period (mPWP, 3.264 to 3.025 Ma). Here, we compare the Atlantic Meridional Overturning Circulation (AMOC), northward ocean heat transport and ocean stratification simulated with these models. None of the models participating in PlioMIP simulates a strong mid-Pliocene AMOC as suggested by earlier proxy studies. Rather, there is no consistent increase in AMOC maximum among the PlioMIP models. The only consistent change in AMOC is a shoaling of the overturning cell in the Atlantic, and a reduced influence of North Atlantic Deep Water (NADW) at depth in the basin. Furthermore, the simulated mid-Pliocene Atlantic northward heat transport is similar to the pre-industrial. These simulations demonstrate that the reconstructed high-latitude mid-Pliocene warming can not be explained as a direct response to an intensification of AMOC and concomitant increase in northward ocean heat transport by the Atlantic.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN24523 , Climate of the Past; 9; 4; 1495-1504
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-18
    Description: The Conical Scanning Submillimeter-wave Imaging Radiometer (CoSSIR) has been developed to study the application of submillimeter-wave radiometry for remote sensing of cirrus clouds and humidity sounding. Measurements of the global distribution of ice cloud mass and particle size are important for understanding the Earth s energy budget and for evaluating global climate models. The spatial variability and the wide variety of cloud particle shapes and sizes make ice clouds particularly difficult to measure. Ice clouds are essentially undetectable at microwave frequencies due to the low dielectric of ice and small size of the particles relative to wavelength. However, submillimeter wavelengths demonstrate significant response to the presence of ice clouds thus this frequency regime is applicable to measuring ice clouds. Another potentially viable application for submillimeter-wave radiometry is humidity and temperature sounding. The principle of sounding at submillimeter wavelengths is similar to that at microwavelengths. Submillimeter-wave radiometry has the advantage of achieving finer spatial resolution using a smaller antenna aperture which is an important consideration for spaceborne observatories. Submillimeter-wave radiometry also offers the potential of sounding over land and as a surrogate measurement for precipitation. CoSSIR is a new instrument to explore these applications. The CoSSIR is designed to fly aboard the ER-2 aircraft and its modest size (approximately 100 kg) permits it to be configured for other aircraft. A dual-axes gimbals mechanism provides conical, across-track, and along-track scanning capability. In its present configuration CoSSIR has fifteen channels between 183 GHz and 640 GHz. Three channels are centered about the 183 GHz water vapor absorption line, four channels are centered about the 380 GHz water vapor absorption line, and three dual-polarized channels are centered about the 487 GHz oxygen absorption line. Two channels are located in atmospheric windows at 220 GHz and 640 GHz. All channels are single-linear polarized with the exception of those near 487 GHz. Calibration is achieved by periodically observing two blackbody radiators; one blackbody is heated to approximately 325 K and the other is approximately 250 K during flight. Details of the instrument design as well as measurements from the Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment will be presented.
    Keywords: Meteorology and Climatology
    Type: 8th Specialist Meeting on Microwave Radiometry and Remote Sensing Application; Feb 24, 2004 - Feb 27, 2004; Rome; Italy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...