ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: We describe and analyze a statistical filtering approach for GRACE data that uses a parametrized model for the temporal evolution of the GRACE coefficients. After least-squares adjustment, a statistical test is performed to assess the significance of the estimated parameters. If the test is passed, the parameters are used by the filter in the reconstruction of the field; otherwise they are rejected. The test is performed, and the filter is formed, separately for annual components of the model and the trend. This new approach is distinct from Gaussian smoothing since it uses the data themselves to test for specific components of the time-varying gravity field. The statistical filter appears inherently to remove most of the "stripes" present in the GRACE fields, although destriping the fields prior to filtering seems to help the trend recovery. We demonstrate that the statistical filter produces reasonable maps for the annual components and trend. We furthermore assess the statistical filter for the annual components using ground-based GPS data in South America by assuming that the annual component of the gravity signal is associated only with groundwater storage. The un-destriped, statistically filtered field has a X2 value relative to the GPS data consistent with the best result from smoothing. In the space domain, the statistical filters are qualitatively similar to Gaussian smoothing. Unlike Gaussian smoothing, however, the statistical filter has significant sidelobes, including large negative sidelobes on the north-south axis, potentially revealing information on the errors, and the correlations among the errors, for the GRACE coefficients.
    Keywords: Meteorology and Climatology
    Type: Journal of Geophysical Research; 113
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: An experimental and numerical investigation into the static and dynamic responses of shape memory alloy hybrid composite (SMAHC) beams is performed to provide quantitative validation of a recently commercialized numerical analysis/design tool for SMAHC structures. The SMAHC beam specimens consist of a composite matrix with embedded pre-strained SMA actuators, which act against the mechanical boundaries of the structure when thermally activated to adaptively stiffen the structure. Numerical results are produced from the numerical model as implemented into the commercial finite element code ABAQUS. A rigorous experimental investigation is undertaken to acquire high fidelity measurements including infrared thermography and projection moire interferometry for full-field temperature and displacement measurements, respectively. High fidelity numerical results are also obtained from the numerical model and include measured parameters, such as geometric imperfection and thermal load. Excellent agreement is achieved between the predicted and measured results of the static and dynamic thermomechanical response, thereby providing quantitative validation of the numerical tool.
    Keywords: Composite Materials
    Type: LF99-8568 , Jounal of Intelligent Material Systems and Structures; 19; 2; 129-143
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...