ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • essential amino acids  (2)
  • Meteorology and Climatology
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Plant molecular biology 32 (1996), S. 727-734 
    ISSN: 1573-5028
    Keywords: Arabidopsis ; essential amino acids ; lysine ; threonine ; transgenic plants
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract To study the regulation of lysine and threonine metabolism in plants, we have transformed Arabidopsis thaliana with chimeric genes encoding the two bacterial enzymes dihydrodipicolinate synthase (DHPS) and aspartate kinase (AK). These bacterial enzymes are much less sensitive to feedback inhibition by lysine and threonine than their plant counterparts. Transgenic plants expressing the bacterial DHPS overproduced lysine, but lysine levels were quite variable within and between transgenic genotypes and there was no direct correlation between the levels of free lysine and the activity of DHPS. The most lysine-overproducing plants also exhibited abnormal phenotypes. However, these phenotypes were detected only at early stages of plant growth, while at later stages, new buds emerged that looked completely normal and set seeds. Wild-type plants exhibited relatively high levels of free threonine, suggesting that in Arabidopsis AK regulation may be more relaxed than in other plants. This was also supported by the fact that expression of the bacterial AK did not cause any dramatic elevation in this amino acid. Yet, the relaxed regulation of threonine synthesis in Arabidopsis was not simply due to a reduced sensitivity of the endogenous AK to feedback inhibition by lysine and threonine because growth of wild-type plants, but not of transgenic plants expressing the bacterial AK, was arrested in media containing these two amino acids. The present results, combined with previous studies from our laboratory, suggest that the regulation of lysine and threonine metabolism is highly variable among plant species and is subject to complex biochemical, physiological and environmental controls. The suitability of these transgenic Arabidopsis plants for molecular and genetic dissection of lysine and threonine metabolism is also discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5028
    Keywords: aspartate kinase ; cDNA ; essential amino acids ; lysine ; threonine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract As in many bacterial species, the first enzymatic reaction of the aspartate-family pathway in plants is mediated by several isozymes of aspartate kinase (AK) that are subject to feedback inhibition by the end-product amino acids lysine or threonine. So far, only cDNAs and genes encoding threonine-sensitive AKs have been cloned from plants. These were all shown to encode polypeptides containing two linked activities, namely AK and homoserine dehydrogenase (HSD), similar to the Escherichia coli thrA gene encoding a threonine-sensitive bifunctional AK/HSD isozyme. In the present report, we describe the cloning of a new Arabidopsis thaliana cDNA that is relatively highly homologous to the E. coli lysC gene encoding the lysine-sensitive AK isozyme. Moreover, similar to the bacterial lysine-sensitive AK, the polypeptide encoded by the present cDNA is monofunctional and does not contain an HSD domain. These observations imply that our cloned cDNA encodes a lysine-sensitive AK. Southern blot hybridization detected a single gene highly homologous to the present cDNA, plus an additional much less homologous gene. This was confirmed by the independent cloning of an additional Arabidopsis cDNA encoding a lysine-sensitive AK (see accompanying paper). Northern blot analysis suggested that the gene encoding this monofunctional AK cDNA is abundantly expressed in most if not all tissues of Arabidopsis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN63673 , American Geophysical Union (AGU) Fall Meeting; Dec 10, 2018 - Dec 14, 2018; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...