ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Meteorology and Climatology  (156)
  • FLUID MECHANICS AND HEAT TRANSFER  (63)
  • 1
    Publication Date: 2018-06-06
    Description: In this paper we present results of a numerical study using the NASA finite-volume GCM to elucidate a plausible mechanism for aerosol impact on the Asian summer monsoon involving interaction with physical processes over the Tibetan Plateau (TP). During the premonsoon season of March April, dusts from the deserts of western China, Afghanistan/Pakistan, and the Middle East are transported into and stacked up against the northern and southern slopes of the TP. The absorption of solar radiation by dust heats up the elevated surface air over the slopes. On the southern slopes, the atmospheric heating is reinforced by black carbon from local emission. The heated air rises via dry convection, creating a positive temperature anomaly in the mid-to-upper troposphere over the TP relative to the region to the south. In May through early June in a manner akin to an elevated heat pump , the rising hot air forced by the increasing heating in the upper troposphere, draws in warm and moist air over the Indian subcontinent, setting the stage for the onset of the South Asia summer monsoon. Our results suggest that increased dust loading coupled with black carbon emission from local sources in northern India during late spring may lead to an advance of the rainy periods and subsequently an intensification of the Indian summer monsoon. The enhanced rainfall over India is associated with the development of an aerosol-induced large-scale sea level pressure anomaly pattern, which causes the East Asia (Mei-yu) rain belt to shift northwestward, suppressing rainfall over East Asia and the adjacent oceanic regions.
    Keywords: Meteorology and Climatology
    Type: Climate Dynamics; Volume 26; No. 7-8; 855-864
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-18
    Description: Global and regional climate impacts of present-day aerosol loading during boreal spring are investigated using the NASA finite volume General Circulation Model (fvGCM). Three-dimensional distributions of loadings of five species of tropospheric aerosols, i.e., sulfate, black carbon, organic carbon, soil dust, and sea salt are prescribed from outputs of the Goddard Ozone Chemistry Aerosol Radiation and Transport model (GOCART). The aerosol loadings are used to calculate the extinction coefficient, single scattering albedo, and asymmetric factor at eleven spectral wavelengths in the radiative transfer code. We find that aerosol-radiative forcing during boreal spring excites a wavetrain-like pattern in tropospheric temperature and geopotential height that emanates from Northern Africa, through Eurasia, to northeastern Pacific. Associated with the teleconnection is strong surface cooling over regions with large aerosol loading, i.e., China, India, and Africa. Low-to-mid tropospheric heating due to shortwave absorption is found in regions with large loading of dust (Northern Africa, and central East Asia), and black carbon (South and East Asia). In addition pronounced surface cooling is found over the Caspian Sea and warming over Eurasian and northeastern Asia, where aerosol loadings are relatively low. These warming and cooling are components of teleconnection pattern produced primarily by atmospheric heating from absorbing aerosols, i.e., dust from North Africa and black carbon from South and East Asia. Effects of aerosols on atmospheric hydrologic cycle in the Asian monsoon region are also investigated. Results show that absorbing aerosols, i.e., black carbon and dust, induce large-scale upper-level heating anomaly over the Tibetan Plateau in April and May, ushering in an early onset of the Indian summer monsoon. Absorbing aerosols also enhance lower-level heating and anomalous ascent over northern India, intensifying the Indian monsoon. Overall, the aerosol-induced large-scale surface tempera- cooling leads to a reduction of monsoon rainfall over the East Asia continent, and adjacent oceanic regions.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-18
    Description: Global and regional climate impacts of present-day aerosol loading during boreal spring are investigated using the NASA finite volume General Circulation Model (fvGCM). Three-dimensional distributions of loadings of five species of tropospheric aerosols, i.e., sulfate, black carbon, organic carbon, soil dust, and sea salt are prescribed from outputs of the Goddard Ozone Chemistry Aerosol Radiation and Transport model (GOCART). The aerosol loadings are used to calculate the extinction coefficient, single scattering albedo, and asymmetric factor at eleven spectral wavelengths in the radiative transfer code. We find that aerosol-radiative forcing during boreal spring excites a wavetrain-like pattern in tropospheric temperature and geopotential height that emanates from Northern Africa, through Eurasia, to northeastern Pacific. Associated with the teleconnection is strong surface cooling over regions with large aerosol loading, i.e., China, India, and Africa. Low-to-mid tropospheric heating due to shortwave absorption is found in regions with large loading of dust (Northern Africa, and central East Asia), and black carbon (South and East Asia). In addition pronounced surface cooling is found over the Caspian Sea and warming over Eurasian and northeastern Asia, where aerosol loadings are relatively low. These warming and cooling are components of teleconnection pattern produced primarily by atmospheric heating from absorbing aerosols, i.e., dust from North Africa and.black carbon from South and East Asia. Effects of aerosols on atmospheric hydrologic cycle in the Asian monsoon region are also investigated. Results show that absorbing aerosols, i.e., black carbon and dust, induce large-scale upper-level heating anomaly over the Tibetan Plateau in April and May, ushering in an early onset of the Indian summer monsoon. Absorbing aerosols also enhance lower-level heating and anomalous ascent over northern India, intensifying the Indian monsoon. Overall, the aerosol-induced large-scale surface temperature cooling leads to a reduction of monsoon rainfall over the East Asia continent, and adjacent oceanic regions.
    Keywords: Meteorology and Climatology
    Type: 85th AMS Annual Meeting; Jan 09, 2005 - Jan 13, 2005; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-18
    Description: Impacts of aerosols on the Asian summer monsoon are studied using the NASA finite volume General Circulation Model (fvGCM), with radiative forcing derived from three-dimensional distributions of five aerosol species i.e., black carbon, organic carbon, soil dust, and sea salt from the Goddard Chemistry Aerosol Radiation and Transport Model (GOCART). Results show that absorbing aerosols, i.e., black carbon and dust, induce large-scale upper-level heating anomaly over the Tibetan Plateau in April and May, ushering in & early onset of the Indian summer monsoon. Absorbing aerosols also I i enhance lower-level heating and anomalous ascent over northern India, intensifying the Indian monsoon. Overall, the aerosol-induced large-scale surface' temperature cooling leads to a reduction of monsoon rainfall over the East Asia continent, and adjacent oceanic regions.
    Keywords: Meteorology and Climatology
    Type: 3rd WMO Monsoon Workshop; Nov 02, 2004 - Nov 06, 2004; Hangzhou; China|International Symposium on Tropical Weather and Climate; Nov 07, 2004 - Nov 11, 2004; Guangzhou; China
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-12-03
    Description: Noting the similarities among the spatial patterns of outgoing longwave radiation among MJO and ENSO, Lau and Chan speculated a possible relationship between the two phenomena. This speculation received a substantial boost in credibility after the 1997-98 El Nino, when MJO activities were found to be substantially enhanced prior to the onset of the warm phase, and clear signals of oceanic Kelvin waves forced by MJO induced anomalous surface wind were detected as possible triggers of ENSO. Yet statistical and modeling studies have so far yielded either nil or at best, very weak relationship between MJO activities and SST. Recently Kessler suggested using an MJO index which includes convective variability in the equatorial central Pacific lead to a more robust MJO-ENSO relationship. Clearly, while MJO might have been instrumental in triggering some El Nino, there are other events that can occur without any MJO trigger.
    Keywords: Meteorology and Climatology
    Type: Prospects for Improved Forecasts of Weather and Short-Term Climate Variability on Subseasonal (2-Week to 2-Month) Times Scales; Volume 23; 88-91; NASA/TM-2002-104606/VOL23
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-08-29
    Description: Precipitation efficiency in the tropical deep convective regime is analyzed based on a 2-D cloud resolving simulation. The cloud resolving model is forced by the large-scale vertical velocity and zonal wind and large-scale horizontal advections derived from TOGA COARE for a 20-day period. Precipitation efficiency may be defined as a ratio of surface rain rate to sum of surface evaporation and moisture convergence (LSPE) or a ratio of surface rain rate to sum of condensation and deposition rates of supersaturated vapor (CMPE). Moisture budget shows that the atmosphere is moistened (dryed) when the LSPE is less (more) than 100 %. The LSPE could be larger than 100 % for strong convection. This indicates that the drying processes should be included in cumulus parameterization to avoid moisture bias. Statistical analysis shows that the sum of the condensation and deposition rates is bout 80 % of the sum of the surface evaporation rate and moisture convergence, which ads to proportional relation between the two efficiencies when both efficiencies are less han 100 %. The CMPE increases with increasing mass-weighted mean temperature and creasing surface rain rate. This suggests that precipitation is more efficient for warm environment and strong convection. Approximate balance of rates among the condensation, deposition, rain, and the raindrop evaporation is used to derive an analytical solution of the CMPE.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-08-29
    Description: The simulations of climatology and response of the South American summer monsoon (SASM) to the 1997/98 El Nino are investigated using six atmospheric general circulation models. Results show all models simulate the large-scale features of the SASM reasonably well. However, both stationary and seasonal components of the surface pressure are overestimated, resulting in an excessively strong SASM in the model climatology. The low-level northwesterly jet over eastern foothills of the Andes is not well resolved because of the coarse resolution of the models. Large rainfall simulation biases are found in association with the Andes and the Atlantic ITCZ, indicating model problems in handling steep mountains and parameterization of convective processes. The simulation of the 1997/98 El Nino impact on SASM is examined based on an ensemble of ten two-year (September 1996 - August 1998) integration. Results show that most models can simulate the large-scale tropospheric warming response over the tropical central Pacific, including the dynamic response of Rossby wave propagation of the Pacific-South America (PSA) pattern that influences remote areas. Deficiencies are found in simulating the regional impacts over South America. Model simulation fails to capture the southeastward expansion of anomalously warm tropospheric air. As a result, the upper tropospheric anomalous high over the subtropical Andes is less pronounced, and the enhancement of subtropical westerly jet is displaced 5deg-10deg equatorward compared to the observed. Over the Amazon basin, the shift of Walker cell induced by El Nino is not well represented, showing anomalous easterlies in both upper and lower troposphere.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-06
    Description: In their recent paper Nigam and Bollasina [2010, hereafter NB] claimed to have found observational evidences that are at variance with the Elevated Heat Pump (EHP) hypothesis regarding the possible impacts of absorbing aerosols on the South Asian summer monsoon [Lau et al., 2006; Lau and Km 2006). We found NB's arguments and inferences against the EHP hypothesis flawed, stemming from a lack of understanding and an out-of-context interpretation of the hypothesis. It was argued that the simultaneous negative correlation of aerosol with rainfall, and correlations with other quantities in May as evidences against the EHP hypothesis. They cannot be more wrong in that argument. First, Lau and Kim [2006, hereafter, LKO6] never stated that the main rainfall response to EHP is in May. Second, the EHP is about responses of the entire Indian monsoon system that are non-local in space and time with respect to the aerosol forcing. Third, the correlation maps shown in NB, including the increased convection over the Bay of Bengal is not the response to EHP but rather represents the large-scale circulation that provides the build-up of the aerosols, before the onset of the monsoon rainfall over India. Because aerosol can only accumulate where there is little or no wash-out by rain, the negative correlation is a necessary condition for increased atmospheric loading of aerosols.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-06
    Description: In this Chapter, aspects of global teleconnections associated with the interannual variability of the Asian summer monsoon (ASM) are discussed. The basic differences in the basic dynamics of the South Asian Monsoon and the East Asian monsoon, and their implications on global linkages are discussed. Two teleconnection modes linking ASM variability to summertime precipitation over the continental North America were identified. These modes link regional circulation and precipitation anomalies over East Asia and continental North America, via coupled atmosphere-ocean variations over the North Pacific. The first mode has a large zonally symmetrical component and appears to be associated with subtropical jetstream variability and the second mode with Rossby wave dispersion. Both modes possess strong sea surface temperature (SST) expressions in the North Pacific. Results show that the two teleconnection modes may have its origin in intrinsic modes of sea surface temperature variability in the extratropical oceans, which are forced in part by atmospheric variability and in part by air-sea interaction. The potential predictability of the ASM associated with SST variability in different ocean basins is explored using a new canonical ensemble correlation prediction scheme. It is found that SST anomalies in tropical Pacific, i.e., El Nino, is the most dominant forcing for the ASM, especially over the maritime continent and eastern Australia. SST anomalies in the India Ocean may trump the influence from El Nino in western Australia and western maritime continent. Both El Nino, and North Pacific SSTs contribute to monsoon precipitation anomalies over Japan, southern Korea, northern and central China. By optimizing SST variability signals from the world ocean basins using CEC, the overall predictability of ASM can be substantially improved.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-19
    Description: Changes in rainfall characteristics induced by global warming are examined based on probability distribution function (PDF) analysis, from outputs of 14 IPCC (Intergovernmental Panel on Climate Change), CMIP (5th Coupled Model Intercomparison Project) models under various scenarios of increased CO2 emissions. Results show that collectively CMIP5 models project a robust and consistent global and regional rainfall response to CO2 warming. Globally, the models show a 1-3% increase in rainfall per degree rise in temperature, with a canonical response featuring large increase (100-250 %) in frequency of occurrence of very heavy rain, a reduction (5-10%) of moderate rain, and an increase (10-15%) of light rain events. Regionally, even though details vary among models, a majority of the models (〉10 out of 14) project a consistent large scale response with more heavy rain events in climatologically wet regions, most pronounced in the Pacific ITCZ and the Asian monsoon. Moderate rain events are found to decrease over extensive regions of the subtropical and extratropical oceans, but increases over the extratropical land regions, and the Southern Oceans. The spatial distribution of light rain resembles that of moderate rain, but mostly with opposite polarity. The majority of the models also show increase in the number of dry events (absence or only trace amount of rain) over subtropical and tropical land regions in both hemispheres. These results suggest that rainfall characteristics are changing and that increased extreme rainfall events and droughts occurrences are connected, as a consequent of a global adjustment of the large scale circulation to global warming.
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.7242.2012 , National Taiwan University International Science Conference on Climate Change: Multidecadal and Beyond; Sep 17, 2012 - Sep 21, 2012; Taipei; Taiwan, Province of China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...