ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 23 (1996), S. 1197-1210 
    ISSN: 0271-2091
    Keywords: finite element method ; gust ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: In the structural design of civil aircraft the critical loads are often those encountered in a gust or atmospheric turbulence. The traditional ‘indicial’ solution is restricted to a simple plate. In this paper a finite element formulation is proposed for an aerofoil or arbitrary shape entering a uniform sharp-edged or sinusoidal gust. The thin rotational gust front and wake in an irrotational flow field are successfully modelled by a novel superposition technique. The finite element solutions are compared with the Kussner function and results by other numerical methods. The agreement is good.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 19 (1994), S. 1039-1047 
    ISSN: 0271-2091
    Keywords: Fully discrete ; High-order ; Conservative ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A fully discrete methodology is investigated from which two-level, explicit, arbitrary-order, conservative numerical schemes for a model parabolic equation can be derived. To illustrate this, fully discrete three-, five-, seven- and nine-point conservative numerical schemes are presented, revealing that a higher-order scheme has a better stability condition. A method from which high-order numerical schemes for a scalar advection-diffusion equation can be developed is discussed. This method is based on high-order schemes of both the advection and diffusion equations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 23 (1996), S. 241-269 
    ISSN: 0271-2091
    Keywords: fully discrete ; high-order ; conservative ; upwind ; shock-capturing ; TVD ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The present paper is a sequel to a previous one by the same authors in which a family of up to fourth-order fully discrete (FD) upwind numerical schemes was presented. In this paper we extend those high-order FD schemes to solutions with discontinuities, e.g. shocks. A rigorous anlaysis of the total variation diminishing (TVD) constraint for the high-order FD schemes is carried out. For non-linear systems the TVD constraint is, as usual, applied empirically. These schemes are validated by solving a test problem for the time-dependent shallow water equations.
    Additional Material: 24 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 23 (1996), S. 309-323 
    ISSN: 0271-2091
    Keywords: fully discrete ; upwind scheme ; TVD high-order ; hyperbolic ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The present paper is a sequel to two previous papers in which rigorous, up to fourth-order, fully discrete (FD) upwind TVD schemes have been presented. In this paper we discuss in detail the extension of these schemes to solutions of non-linear hyperbolic systems. The performance of the schemes is assessed by solving test problems for the time-dependent Euler equations of gas dynamics in one and two space dimensions. We use exact solutions and experimental data to validate the results.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 37 (1994), S. 1897-1913 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: New procedures are proposed for implicit dynamic analysis using the finite element method. The main aim is to give stable solutions with significant rigid-body motions, in particular rotations. In contrast to most conventional approaches, the time-integration strategy is closely linked to the ‘element technologies’ with the latter involving a form of co-rotational procedure. For the undamped situation, one of the solution procedures leads to an algorithm that exactly conserves energy when constant external forces are applied (i.e. with gravity loading).
    Additional Material: 21 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    Communications in Numerical Methods in Engineering 11 (1995), S. 793-803 
    ISSN: 1069-8299
    Keywords: arc-length control ; line search ; path-following ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: When solving non-linear algebraic equations resulting from a typical finite element discretization it is quite common that the popular Newton-Raphson iteration fails to converge or requires an excessive number of iterations. To solve this problem, line searches have been proposed in conjunction with load control and quadratic arc-length control, which has proved to be highly successful. In the paper we first review a number of the most popular arc-length controls. Then we highlight the severe drawbacks associated with the coupling of the cylindrical arc-length control and line searches. Next, various other forms of arc-length controls are scrutinized in the light of this coupling. It is shown that for some of the arc-length controls such a combination is extremely simple and straightforward, yet at the same time efficient and effective. For the rest the same complications incurred for the cylindrical arc-length method remain.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-06
    Description: One of the grand challenges of the Global Precipitation Measurement (GPM) mission is to improve cold season precipitation measurements in middle and high latitudes through the use of high-frequency passive microwave radiometry. For this, the Weather Research and Forecasting (WRF) model with the Goddard microphysics scheme is coupled with a satellite data simulation unit (WRF-SDSU) that has been developed to facilitate over-land snowfall retrieval algorithms by providing a virtual cloud library and microwave brightness temperature (Tb) measurements consistent with the GPM Microwave Imager (GMI). This study tested the Goddard cloud microphysics scheme in WRF for two snowstorm events, a lake effect and a synoptic event, that occurred between 20 and 22 January 2007 over the Canadian CloudSAT/CALIPSO Validation Project (C3VP) site in Ontario, Canada. The 24h-accumulated snowfall predicted by the WRF model with the Goddard microphysics was comparable to the observed accumulated snowfall by the ground-based radar for both events. The model correctly predicted the onset and ending of both snow events at the CARE site. WRF simulations capture the basic cloud properties as seen by the ground-based radar and satellite (i.e., CloudSAT, AMSU-B) observations as well as the observed cloud streak organization in the lake event. This latter result reveals that WRF was able to capture the cloud macro-structure reasonably well.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-06
    Description: Advances in computing power allow atmospheric prediction models to be mn at progressively finer scales of resolution, using increasingly more sophisticated physical parameterizations and numerical methods. The representation of cloud microphysical processes is a key component of these models, over the past decade both research and operational numerical weather prediction models have started using more complex microphysical schemes that were originally developed for high-resolution cloud-resolving models (CRMs). A recent report to the United States Weather Research Program (USWRP) Science Steering Committee specifically calls for the replacement of implicit cumulus parameterization schemes with explicit bulk schemes in numerical weather prediction (NWP) as part of a community effort to improve quantitative precipitation forecasts (QPF). An improved Goddard bulk microphysical parameterization is implemented into a state-of the-art of next generation of Weather Research and Forecasting (WRF) model. High-resolution model simulations are conducted to examine the impact of microphysical schemes on two different weather events (a midlatitude linear convective system and an Atllan"ic hurricane). The results suggest that microphysics has a major impact on the organization and precipitation processes associated with a summer midlatitude convective line system. The 31CE scheme with a cloud ice-snow-hail configuration led to a better agreement with observation in terms of simulated narrow convective line and rainfall intensity. This is because the 3ICE-hail scheme includes dense ice precipitating (hail) particle with very fast fall speed (over 10 m/s). For an Atlantic hurricane case, varying the microphysical schemes had no significant impact on the track forecast but did affect the intensity (important for air-sea interaction)
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-12
    Description: During the past decade, both research and operational numerical weather prediction models [e.g. Weather Research and Forecasting Model (WRF)] have started using more complex microphysical schemes originally developed for high-resolution cloud resolving models (CRMs) with a 1-2 km or less horizontal resolutions. The WRF is a next-generation meso-scale forecast model and assimilation system that has incorporated a modern software framework, advanced dynamics, numeric and data assimilation techniques, a multiple moveable nesting capability, and improved physical packages. The WRF model can be used for a wide range of applications, from idealized research to operational forecasting, with an emphasis on horizontal grid sizes in the range of 1-10 km. The current WRF includes several different microphysics options. At Goddard, four different cloud microphysics schemes (warm rain only, two-class of ice, two three-class of ice with either graupel or hail) are implemented into the WRF. The performances of these schemes have been compared to those from other WRF microphysics scheme options for an Atlantic hurricane case. In addition, a brief review and comparison on the previous modeling studies on the impact of microphysics schemes and microphysical processes on intensity and track of hurricane will be presented. Generally, almost all modeling studies found that the microphysics schemes did not have major impacts on track forecast, but did have more effect on the intensity. All modeling studies found that the simulated hurricane has rapid deepening and/or intensification for the warm rain-only case. It is because all hydrometeors were very large raindrops, and they fell out quickly at and near the eye-wall region. This would hydrostatically produce the lowest pressure. In addition, these modeling studies suggested that the simulated hurricane becomes unrealistically strong by removing the evaporative cooling of cloud droplets and melting of ice particles. This is due to the much weaker downdraft simulated. However, there are many differences between different modeling studies and these differences were identified and discussed.
    Keywords: Meteorology and Climatology
    Type: GSFC.JA.7134.2012
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-19
    Description: Cloud microphysical processes play an important role in non-hydrostatic high-resolution simulations. Over the past decade both research and operational numerical weather prediction models have started using more complex cloud microphysical schemes that were originally developed for high-resolution cloud-resolving models. An improved bulk microphysical parameterization (adopted from the Goddard microphysics schemes) has recently implemented into the Weather Research and Forecasting (WRF) model. This bulk microphysical scheme has three different options --- 2ICE (cloud ice & snow), 3ICE-graupel (cloud ice, snow & graupel) and 3ICE-hail (cloud ice, snow & hail). High-resolution model simulations are conducted to examine the impact of microphysical schemes on two different weather events (a midlatitude linear convective system and an Atlantic hurricane). In addition, this bulk microphysical parameterization is compared with WIRF's three other bulk microphysical schemes.
    Keywords: Meteorology and Climatology
    Type: American Geophysical Union Meeting; Dec 10, 2007 - Dec 14, 2007; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...