ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2005-11-01
    Description: The goal of this study was to determine, through modeling, the impact of aircraft emissions on regional air quality, especially in regard to fine particulate matter (PM(2.5)) as well as ozone and other pollutants. For this, we focused on Hartsfield-Jackson Atlanta International Airport which is the busiest airport in the world based on passenger traffic (AIC, 2003). Hartsfield-Jackson serves the metropolitan Atlanta area where air quality does not meet national standards. Emissions from mobile and industrial sources (including several large electric power generating utilities) are the major contributors to the area's air pollution. In this study, we assessed the impact of Hartsfield-Jackson Airport on air quality around Atlanta, Georgia, and compared it to the impacts of other emission sources in the area. The assessment was built upon other, related air quality studies involving both field and modeling components. To achieve the objectives, first a detailed inventory was developed for aircraft and other emissions at Hartsfield-Jackson Atlanta International Airport. Then, air quality simulations were performed to relate these emissions to regional air quality around Atlanta. The Community Multiscale Air Quality Model (CMAQ) was used as the modeling platform. The period of August 11-20 2000 was selected as the episode to be modeled in this study. Prior modeling of this episode during the Fall Line Air Quality Study (FAQS) and availability of additional PM(2.5) measurements for evaluation played a major role in this selection. Meteorological data for this episode as well as emission data for sources other than aircrafts were already available from FAQS.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-06
    Description: Microwave Limb Sounder and Sounding of the Atmosphere with Broadband Emission Radiometry data show the polar stratopause, usually higher than and separated from that at midlatitudes, dropping from 〈55-60 to near 30 km, and cooling dramatically in January 2006 during a major stratospheric sudden warming (SSW). After a nearly isothermal period, a cool stratopause reforms near 75 km in early February, then drops to 〈55 km and warms. The stratopause is separated in longitude as well as latitude, with lowest temperatures in the transition regions between higher and lower stratopauses. Operational assimilated meteorological analyses, which are not constrained by data at stratopause altitude, do not capture a secondary temperature maximum that overlies the stratopause or the very high stratopause that reforms after the SSW; they underestimate the stratopause altitude variation during the SSW. High-quality daily satellite temperature measurements are invaluable in improving our understanding of stratopause evolution and its representation in models and assimilation systems.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-06
    Description: This paper describes the retrievals algorithm used to determine temperature and height from radiance measurements by the Microwave Limb Sounder on EOS Aura. MLS is a "limbscanning" instrument, meaning that it views the atmosphere along paths that do not intersect the surface - it actually looks forwards from the Aura satellite. This means that the temperature retrievals are for a "profile" of the atmosphere somewhat ahead of the satellite. Because of the need to view a finite sample of the atmosphere, the sample spans a box about 1.5km deep and several tens of kilometers in width; the optical characteristics of the atmosphere mean that the sample is representative of a tube about 200-300km long in the direction of view. The retrievals use temperature analyses from NASA's Goddard Earth Observing System, Version 5 (GEOS-5) data assimilation system as a priori states. The temperature retrievals are somewhat deperrde~zt on these a priori states, especially in the lower stratosphere. An important part of the validation of any new dataset involves comparison with other, independent datasets. A large part of this study is concerned with such comparisons, using a number of independent space-based measurements obtained using different techniques, and with meteorological analyses. The MLS temperature data are shown to have biases that vary with height, but also depend on the validation dataset. MLS data are apparently biased slightly cold relative to correlative data in the upper troposphere and slightly warm in the middle stratosphere. A warm MLS bias in the upper stratosphere may be due to a cold bias in GEOS-5 temperatures.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: More than three years of temperature observations from the SABER (TIMED) and MLS WARS) instruments are analyzed to study the annual and inter-annual variations extending from the stratosphere into the upper mesosphere. The SABER measurements provide data from a wide altitude range (15 to 95 km) for the years 2002 to 2004, while the MLS data were taken in the 16 to 55 km altitude range a decade earlier. Because of the sampling properties of SABER and MLS, the variations with local solar time must be accounted for when estimating the zonal mean variations. An algorithm is thus applied that delineates with Fourier analysis the year-long variations of the migrating tides and zonal mean component. The amplitude of the diurnal tide near the equator shows a strong semiannual periodicity with maxima near equinox, which vary from year to year to indicate the influence from the Quasi-biennial Oscillation (QBO) in the zonal circulation. The zonal mean QBO temperature variations are analyzed over a range of latitudes and altitudes, and the results are presented for latitudes from 48"s to 48"N. New results are obtained for the QBO, especially in the upper stratosphere and mesosphere, and at mid-latitudes. At Equatorial latitudes, the QBO amplitudes show local peaks, albeit small, that occur at different altitudes. From about 20 to 40 km, and within about 15" of the Equator, the amplitudes can approach 3S K for the stratospheric QBO or SQBO. For the mesospheric QBO or MQBO, we find peaks near 70 km, with temperature amplitudes reaching 3.5"K, and near 85 km, the amplitudes approach 2.5OK. Morphologically, the amplitude and phase variations derived from the SABER and MLS measurements are in qualitative agreement. The QBO amplitudes tend to peak at the Equator but then increase again pole-ward of about 15" to 20'. The phase progression with altitude varies more gradually at the Equator than at mid-latitudes. A comparison of the observations with results from the Numerical Spectral Model (NSM) reveals that there is qualitative agreement. The NSM generates the QBO extending from the stratosphere into the upper mesosphere, with temperature variations extending to mid latitudes, but the predicted amplitudes are smaller than those observed.
    Keywords: Meteorology and Climatology
    Type: Western Pacific Geophysical meeting; Jul 24, 2006 - Jul 27, 2006; Beijing; China
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-19
    Description: The TIMED Satellite was launched on December 7, 2001 to study the dynamics and energy of the mesosphere and lower thermosphere. The TIMED/SABER instrument is a limb scanning infrared radiometer designed to measure a large number of minor constituents as well as the temperature of the region. In this study, we have concentrated on the polar mesosphere, to investigate the temperature characteristics as a function of spatial and temporal considerations. We used the recently revised SABER dataset (1.07) that contains improved temperature retrievals in the Earth polar summer regions. Weekly averages are used to make comparisons between the winter and summer, as well as to study the variability in different quadrants of each hemisphere. For each year studied, the duration of polar summer based on temperature measurements compares favorably with the PMSE (Polar Mesospheric Summer Echoes) season measured by radar at the ALOMAR Observatory in Norway (69 N). The PMSE period should also define the summer period suitable for the occurrence of polar mesospheric clouds. The unusual short and relatively warm polar summer in the northern hemisphere
    Keywords: Meteorology and Climatology
    Type: 2008 Fall AGU Meeting; Dec 14, 2008 - Dec 19, 2008; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-19
    Description: The SABER instrument on board the TIMED Satellite is a limb scanning infrared radiometer designed to measure temperature and minor constituent vertical profiles and energetics parameters in the mesosphere and lower thermosphere (MLT). The H2O concentrations are retrieved from 6.3 micron band radiances. The populations of H2O(v2) vibrational levels are in non-Local Thermodynamic Equilibrium (non-LTE) above approximately 55 km altitude and the interpretation of 6.3 micron radiance requires utilizing non-LTE H2O model that includes various energy exchange processes in the system of H2O vibrational levels coupled with O2, N2, and CO2 vibrational levels. We incorporated these processes including kinetics of O2/O3 photolysis products to our research non-LTE H2O model and applied it for the development and optimization of SABER operational model. The latter has been validated using simultaneous SCISAT1/ACE occultation measurements. This helped us to estimate CO2(020)-O2(X,v=I), O2(X,v=I)- H2O(010), and O2(X,v=1) O rates at mesopause temperatures that is critical for an adequate interpretation of non-LTE H2O radiances in the MLT. The first distributions of seasonal and meridional H2O concentrations retrieved from SABER 6.3 micron radiances applying an updated non-LTE H2O model are demonstrated and discussed.
    Keywords: Meteorology and Climatology
    Type: European Geosciences Union (EGU) General Assembly 2008; Apr 13, 2008 - Apr 18, 2008; Vienna; Austria
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-19
    Description: The Optical Spectrograph and Infrared Imaging System (OSIRIS) instrument on board the Odin satellite detects Polar Mesospheric Clouds (PMCs) through the enhancement in the limb scattered solar radiance. The Sounding of the Atmosphere using the Broadband Emission Radiometry (SABER) instrument on board the TIMED satellite is a limb scanning infrared radiometer that measures temperature and vertical profiles and energetic parameters for minor constituents in the mesosphere and lower thermosphere. The combination of OSIRIS and SABER data has been previously used to statistically derive thermal conditions for PMC existence [Petelina et al., 2005]. In this work, we employ the simultaneous common volume measurements of PMCs by OSIRIS and temperature profiles measured by SABER for the Northern Hemisphere summers of 2002-2005 and corrected in the polar region by accounting for the vibrational-vibrational energy exchange among the CO2 isotopes [Kutepov et al., 2006]. For each of 20 coincidences identified within plus or minus 1 degree latitude, plus or minus 2 degrees longitude and less than 1 hour time the frost point temperatures were calculated using the corresponding SABER temperature profile and water vapor densities of 1,3, and 10 ppmv. We found that the PMC presence and brightness correlated only with the temperature threshold that corresponds to the frost point. The absolute value of the temperature below the frost point, however, didn't play a significant role in the intensity of PMC signal for the majority of selected coincidences. The presence of several bright clouds at temperatures above the frost point is obviously related to the limitation of the limb geometry when some near- or far-field PMCs located at higher (and warmer) altitudes appear to be at lower altitudes.
    Keywords: Meteorology and Climatology
    Type: The Polar Summer MLT Plasma Environment as Seen by the Drops Soudning Rockets; 11-15, Dec. 2006; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-19
    Description: The SABER instrument on board the TIMED Satellite is a limb scanning infrared radiometer designed to measure temperature and minor constituent vertical profiles and energetics parameters in the mesosphere and lower thermosphere (MLT). The measurements have been performed continuously since January 25, 2002 to provide excellent coverage for both hemispheres. The Leibniz-Institute of Atmospheric Physics (LAP) at Kuehlungsborn, Germany (54N, 12E) operates two lidar instruments, using three different temperature measurement methods, optimized for three altitude ranges. The total altitude range of the lidar installation lies from 1 to 105 km. Another instrument used for intercomparison is the ALOMAR RMR lidar, located at Andoya, Norway (69N, 16E). We have searched the SABER and lidar datasets for coincidental common volume measurements within plus or minus 1 degree in latitude, plus or minus 2 degrees in longitude and approx. 1 hour in time for the sake of (a) comparison of measured temperatures; (b) validation of the models used in SABER data analysis; and (c) extracting new information about MLT parameters. In this work we applied the non-LTE ALI-ARMS code designed to calculate the nonequilibrium radiance in different viewing geometries to the analysis of measurements which satisfied these search criteria. The results of this analysis (a) support the application of higher value of CO2-O quenching rate (6e-12 cubic centimeters per second) by the non-LTE temperature retrievals from the SABER 15 micrometer limb radiance data, and (b) demonstrate the importance of accounting for the vibrational-vibrational energy exchange among the CO2 isotopes for accurate temperature retrievals. Using temperature profiles obtained in lidar measurements as inputs for the retrieval algorithm we also retrieved the nighttime CO2 densities from the SABER 15 micrometer limb radiances and compared them with the model and climatology CO2 data used in the SABER nighttime temperature retrievals.
    Keywords: Meteorology and Climatology
    Type: 2006 AGU Fall Meeting; Dec 11, 2006 - Dec 15, 2006; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-19
    Description: In the zonal mean meridional winds of the upper mesosphere, intra-seasonal oscillations with periods between 1 and 4 months have been inferred from UARS measurements and independently predicted with the Numerical Spectral Model WSM). The wind oscillations tend to be confined to low latitudes and appear to be driven, at least in part, by small-scale gravity waves propagating in the meridional direction. Winds across the equator should generate, due to dynamical heating and cooling, temperature oscillations with opposite phase in the two hemispheres. Investigating this phenomenon, we have analyzed SABER temperatures from TIMED in the altitude range between 55 and 95 km to delineate with an empirical model, the year-long variability of the migrating tides and zonal mean components. The inferred seasonal variations of the diurnal tide, characterized by amplitude maxima near equinox, are in substantial agreement with UARS observations and results from the NSM. For the zonal mean, the dominant seasonal variations in the SABER temperatures, with annual (12 months) and semiannual (6 months) periodicities, agree well with those derived from UARS measurements. The intra-seasonal variations with periods between 2 and 4 months have amplitudes close to 2 K, almost half as large as those for the dominant seasonal variations. Their amplitudes are in qualitative agreement with the corresponding values inferred from UARS during different years. The SABER and UARS temperature variations reveal pronounced hemispherical asymmetries, consistent with meridional wind oscillations across the equator. The phase of the semi-annual temperature oscillations from the NSM agrees with the observations from UARS and SABER. But the amplitudes are systematically smaller, which may indicate that planetary waves are more important than is allowed for in the model. For the shorter-period intra-seasonal variations, which can be generated by gravity wave drag, the model results are generally in better agreement with the observations.
    Keywords: Meteorology and Climatology
    Type: COSPAR Meeting; Jul 16, 2006 - Jul 23, 2006; Beijing; China
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-19
    Description: The SABER instrument on board the TIMED satellite is a limb scanning infrared radiometer designed to measure temperature and minor constituent vertical profiles and energetics parameters in the mesosphere and lower thermosphere (MLT) The H2O concentrations are retrieved from 6.3 micron band radiances. The interpretation of this radiance requires developing a non-LTE H2O model that includes energy exchange processes with the system of O3 and O2 vibrational levels populated at the daytime through a number of photoabsorption and photodissociation processes. We developed a research model base on an extended H2O non-LTE model of Manuilova coupled with the novel model of the electronic kinetics of the O2 and O3 photolysis products suggested by Yankosvky and Manuilova. The performed study of this model helped u to develop and test an optimized operational model for interpretation of SABER 6.3 micron band radiances. The sensitivity of retrievals to the parameters of the model is discussed. The H2O retrievals are compared to other measurements for different seasons and locations.
    Keywords: Meteorology and Climatology
    Type: 2007 Fall AGU meeting; Dec 09, 2007 - Dec 15, 2007; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...