ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of atmospheric chemistry 14 (1992), S. 353-374 
    ISSN: 1573-0662
    Keywords: North Pacific ; global atmospheric chemistry ; modeling ; radon
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract The atmospheric distribution of222Rn over the north Pacific is simulated with a three-dimensional chemical tracer model using meteorological input from the NASA-GISS general circulation model (4°×5° resolution). Radon-222 (half-life 3.8 days) is a tracer of continental air. Model results are in good agreement with measurements from ships and aircraft. Strong Asian influence is found throughout the tropospheric column over the north Pacific in spring, reflecting a combination of frequent convection over the continent, strong westerly winds at altitude, and subsidence over the ocean. In summer, the upper troposphere over the north Pacific is heavily affected by deep convection over China; however, Asian influences at the surface are then at their yearly minimum. In winter, strong Asian influence is found near the surface but not at high altitudes. Transport of American air over the Pacific is important only at low latitudes. American sources account for 11% of total222Rn in the model at Midway, 30% at Mauna Loa and 59% at Oahu. Results for Hawaii indicate two seasonal peaks of American influence, one in summer and one in winter. The tropical western Pacific is particularly remote from continental influences year round.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-14
    Description: The Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) field mission based at Ellington Field, Texas, during August and September 2013 employed the most comprehensive airborne payload to date to investigate atmospheric composition over North America. The NASA ER-2, DC-8, and SPEC Inc. Learjet flew 57 science flights from the surface to 20 km. The ER-2 employed seven remote sensing instruments as a satellite surrogate and eight in situ instruments. The DC-8 employed 23 in situ and five remote sensing instruments for radiation, chemistry, and microphysics. The Learjet used 11 instruments to explore cloud microphysics. SEAC4RS launched numerous balloons, augmented Aerosol RObotic NETwork, and collaborated with many existing ground measurement sites. Flights investigating convection included close coordination of all three aircraft. Coordinated DC-8 and ER-2 flights investigated the optical properties of aerosols, the influence of aerosols on clouds, and the performance of new instruments for satellite measurements of clouds and aerosols. ER-2 sorties sampled stratospheric injections of water vapor and other chemicals by local and distant convection. DC-8 flights studied seasonally evolving chemistry in the Southeastern U.S., atmospheric chemistry with lower emissions of NOx and SO2 than in previous decades, isoprene chemistry under high and low NOx conditions at different locations, organic aerosols, air pollution near Houston and in petroleum fields, smoke from wildfires in western forests and from agricultural fires in the Mississippi Valley, and the ways in which the chemistry in the boundary layer and the upper troposphere were influenced by vertical transport in convective clouds.
    Keywords: Meteorology and Climatology; Environment Pollution
    Type: GSFC-E-DAA-TN41245 , Journal of Geophysical Research: Atmospheres (ISSN 2169-897X) (e-ISSN 2169-8996); 121; 9; 4967-5009
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...