ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in MicrobiologyOpen 7 (2018): e00586, doi:10.1002/mbo3.586.
    Description: Chemoautotrophic bacteria belonging to the genus Sulfurimonas in the class Campylobacteria are widespread in many marine environments characterized by redox interfaces, yet little is known about their physiological adaptations to different environmental conditions. Here, we used liquid chromatography coupled with tandem mass spectrometry (LC-MS/ MS) in a targeted metabolomics approach to study the adaptations of Sulfurimonas denitrificans to varying salt concentrations that are found in its natural habitat of tidal mudflats. Proline was identified as one of the most abundant internal metabolites and its concentration showed a strong positive correlation with ionic strength, suggesting that it acts as an important osmolyte in S. denitrificans. 2,3-dihydroxypropane- 1- sulfonate was also positively correlated with ionic strength, indicating it might play a previously unrecognized role in osmoregulation. Furthermore, the detection of metabolites from the reductive tricarboxylic acid cycle at high internal concentrations reinforces the importance of this pathway for carbon fixation in Campylobacteria and as a hub for biosynthesis. As the first report of metabolomic data for an campylobacterial chemolithoautotroph, this study provides data that will be useful to understand the adaptations of Campylobacteria to their natural habitat at redox interfaces.
    Description: NSF, Grant/Award Number: OCE- 1136727 and OCE-1154320; Woods Hole Oceanographic Institution; U.S. Geological Survey
    Keywords: Environmental stress ; Metabolism ; Metabolomics ; Microbial ecology ; Osmoregulation ; Sulfurimonas
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2018. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Organic Geochemistry 125 (2018): 41-49, doi:10.1016/j.orggeochem.2018.08.004.
    Description: Deep-sea hydrothermal vents are unique ecosystems that may release chemically distinct dissolved organic matter to the deep ocean. Here, we describe the composition and concentrations of polar dissolved organic compounds observed in low and high temperature hydrothermal vent fluids at 9°50’N on the East Pacific Rise. The concentration of dissolved organic carbon was 46 μM in the low temperature hydrothermal fluids and 14 μM in the high temperature hydrothermal fluids. In the low temperature vent fluids, quantifiable dissolved organic compounds were dominated by water-soluble vitamins and amino acids. Derivatives of benzoic acid and the organic sulfur compound 2,3-dihydroxypropane-1-sulfonate (DHPS) were also present in low and high temperature hydrothermal fluids. The low temperature vent fluids contain organic compounds that are central to biological processes, suggesting that they are a by-product of biological activity in the subseafloor. These compounds may fuel heterotrophic and other metabolic processes at deep-sea hydrothermal vents and beyond.
    Description: This project was funded by a grant from WHOI’s Deep Ocean Exploration Institute and WHOI’s Ocean Ridge Initiative (to EBK and SMS) and by NSF OCE-1154320 (to EBK and KL), OCE- 1136727 (to SMS and JSS), and OCE 1131095 (to SMS).
    Keywords: Metabolomics ; Hydrothermal vents ; Deep-sea ; Dissolved organic matter ; Vitamins ; Atlantis (Ship : 1996-) Cruise AT26-10 ; Atlantis (Ship : 1996-) Cruise AT26-23
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...