ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5079
    Keywords: environmental stress ; Mesembryanthemum crystallinum ; phosphoribulokinase ; gene expression ; protein expression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The expression of PRK (phosphoribulokinase, E.C.2.7.1.19) in ice plant (Mesembryanthemum crystallinum) during development and under environmental stress was studied. cDNA clones were isolated and full-length cDNAs were characterized. Ice plant PRK is contained in a 1520 nucleotide transcript including a 126 nucleotide leader sequence, a 175 nucleotide 3′-end and a 20–30 nucleotide polyA+-stretch. The coding region, 397 codons, specifies a protein of Mr 44 064. The mature sequence is preceded by a transit peptide of approximately 46 amino acids. The mature portion of ice plant PRK is 86.4% identical to that of spinach and, e.g., 16.2% identical to PRK from Xanthomonas flavus. Under salt stress or cold adaptation conditions, the amount of mRNA declined by a factor of approximately three within days, followed by an increase to approximately pre-stress levels. The fluctuation in mRNA amount is not reflected on the level of transcription of the gene, suggesting post-transcriptional control, nor is PRK protein amount affected significantly over the short stress period. The recovery of transcript levels for photosynthesis-related proteins after stress appears to be a general response to environmental stresses that affect water status in ice plant. We suggest that the photosynthetic machinery in this facultative halophyte is effectively buffered from damage caused by such environmental stress.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5079
    Keywords: Crassulacean acid metabolism ; gene expression ; Mesembryanthemum crystallinum ; mRNA levels ; soil salinity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Mesembryanthemum crystallinum responds to high salinity in the soil by shifting the mode of carbon assimilation from the C3 mode to Crassulacean acid metabolism (CAM). Several enzymes of carbon metabolism have increased apparent activities in the CAM mode, including phosphoenolpyruvate carboxylase (PEPcase) and pyruvate orthophosphate dikinase (PPDK). We have identified cDNA clones for PEPcase and PPDK by immunological screening of a cDNA library constructed in the protein expression vector lambda gt11. The clones were characterized by immunoblotting and RNA blotting techniques. RNA blotting showed that during CAM induction the steady-state level of mRNAs for both PEP case and PPDK increased.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5028
    Keywords: gene expression ; RNA stability regulation ; chloroplast RNA-binding protein (cRBP) ; environmental stress ; Mesembryanthemum crystallinum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We report the characterization of transcripts from the halophyte, Mesembryanthemum crystallinum, encoding a protein with high homology to chloroplast RNA-binding proteins (cRBP). In this plant chloroplast-related functions are largely protected against salt stress. cRBP transcripts are derived from a single gene, Mc32crbp, although three size classes of polyadenylated mRNAs are detected. Transcription rate and steady state amounts of mRNA are developmentally regulated and light controlled with strong transcriptional activity as functional chloroplasts are established, and with lower maintenance activity thereafter. Upon salt stress, the rate of transcription decreases, although transcript levels increase. Accompanying stress, a change in the distribution of transcript size classes is observed as the longest transcript with an untranslated 3′ end of 381 nucleotides increases relative to transcripts with shorter 3′ ends. The long transcript is characterized by the presence of five sequence elements in the 3′-untranslated region that are present in cRBP mRNAs from a variety of plants, although not all elements are found in each mRNA. The results may indicate a mechanism by which mRNA levels of constitutively light-regulated genes may be modulated without enhanced transcription in response to environmental cues.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5028
    Keywords: ice plant ; Mesembryanthemum crystallinum ; salt stress ; phosphoenolpyruvate carboxylase ; Crassulacean acid metabolism (CAM)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The common ice plant, Mesembryanthemum crystallinum, shifts from C3 to crassulacean acid metabolism (CAM) photosynthesis in response to osmotic stress. The expression of a number of genes encoding enzymes involved in the CAM pathway increases as a result of increased transcription rates. To begin to investigate the mechanisms responsible for the transcriptional activation, we have characterized the 5′ control region of a specific isoform of phosphoenolpyruvate carboxylase gene (Ppc1) that plays a key role in CAM. We have determined the nucleotide sequence of the 5′ flanking region of this gene. Ppc1 contains a long 5′-leader sequence with the transcriptional start site located 332/333 nucleotides 5′ of the translational initiation codon. Multiple DNA interactions with nuclear factors are detectable within the 5′-flanking region of Ppc1. We have used copper orthophenanthroline footprinting to demonstrate that one particularly abundant factor (designated PCAT-1) binds the Ppc1 promoter at two distinct A/T-rich sites located −128 to −158 and −187 to −205 bp upstream of the transcriptional start site. These binding sites share a loose consensus motif having the sequence AARTAAC(T/A)A(G/T)TTTY. Gel retardation competition experiments with oligonucleotides containing these A/T-rich binding sites suggest that both sites bind the same factor, but with different affinities. Fractionation of crude nuclear extracts by heparin-agarose chromatography indicates that PCAT-1 is more prevalent in extracts prepared from salt-stressed leaf tissue. Additional binding activities that interact with the PCAT-1 binding sites have been detected that either increase or decrease in abundance or binding affinity in response to salt stress.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-5028
    Keywords: Mesembryanthemum crystallinum ; salt stress ; phosphoenolpyruvate carboxylase ; tobacco ; crassulacean acid metabolism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The 5′ flanking region of a salt-stress-inducible, CAM-specific phosphoenolpyruvate carboxylase (PEPC) gene from the facultative halophyte Mesembryanthemum crystallinum, was fused to the β-glucuronidase (GUS) reporter gene and introduced into Nicotiana tabacum SR1. The Ppc1 promoter displayed high levels of expression in transgenic tobacco quantitatively and qualitatively similar to a full-length 35S CaMV-GUS construct. Histochemical assays revealed that the full-length Ppc1-GUS fusions expressed GUS activity in all tissues except in root tips. While tobacco is capable of utilizing the Ppc1 cis-acting regulatory regions from M. crystallinum to yield high levels of constitutive expression, this glycophyte fails to direct a stress-inducible pattern of gene expression typical of this promoter in its native, facultative halophytic host.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-5028
    Keywords: Mesembryanthemum crystallinum ; salt stress ; reverse transcription differential display ; ribosome-inactivating protein ; diurnal expression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Transcripts of altered abundance in RNA from unstressed and 500 mm salt-shocked Mesembryanthemum crystallinum (common ice plant) were detected by reverse-transcription differential display (RT-DD). One transcript, Rip1, was of very low abundance in unstressed plants and was strongly induced by stress. RNA blot hybridizations showed strong induction and a diurnal rhythm of transcript abundance with a maximum each day around the middle of the light phase. Rip1 encodes a reading frame of 289 amino acids (molecular mass 32652), RIP1, with homology to single-chain ribosome inactivating proteins (rRNA N-glycosidases). The deduced amino acid sequence is 31.7% identical to pokeweed antiviral protein RIP-C (overall similarity 66.5%) with highest identity in domains of documented functional importance. RT-DD also detected mRNA for pyruvate,orthophosphate dikinase (PPDK) which has already been shown to be stress-induced in the ice plant [16]. RIP1, expressed in Escherichia coli, showed rRNA N-glycosidase activity against ice plant and rabbit reticulocyte ribosomes. The induction of Rip1 coincides with the transition period during which global changes in translation lead to adaptation of the ice plant to salt stress.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1617-4623
    Keywords: Ice plant ; Crassulacean acid metabolism (CAM) ; Mesembryanthemum crystallinum ; Salt stress ; Phospho(enol)pyruvate carboxylase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We have determined the complete nucleotide sequence of a full length cDNA encoding the Crassulacean acid metabolism (CAM) isogene of phospho(enol)pyruvate carboxylase (PEPCase). The cDNA clone, 3348 bp in length, was obtained from mRNA isolated from Mesembryanthemum crystallinum (common ice plant) which had undergone salt stress and subsequent induction of CAM. The long open reading frame encodes PEPCase (EC 4.1.1.31) with a predicted molecular mass of 110533 daltons. The deduced amino acid sequence of the ice plant PEPCase is most similar to that from maize having an amino acid identity of 74.9%. Sequence identity in corresponding regions of the PEPCase proteins from Escherichia coli and the cyanobacterium Anacystis nidulans are 41.4% and 33.5%, respectively. A compilation of the four amino acid sequences permitted the identification of phylogenetically conserved regions within the proteins which may play a role in the function of this important enzyme in plant metabolism. Gene specific probes from 3′ coding and noncoding regions of the cDNA clone used to probe genomic Southern blots established that this PEPCase gene is present in one copy in the nuclear genome of M. crystallinum. Transcripts arising from this gene increase dramatically when M. crystallinum is irrigated with 0.5 M NaCl, a stress which induces this plant to switch the primary fixation of CO2 from C3 (Calvin cycle) to CAM mode. The salt-induced mRNA encodes a PEPCase isoform which is undetectable in plants in the C3 mode as demonstrated by Northern hybridization.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1617-4623
    Keywords: Genome organization ; Environmental stress ; Changes in gene expression ; Mesembryanthemum crystallinum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Mesembryanthemum crystallinum (common ice plant), a facultative halophyte with a genome size of 393 000 kb, was used to estimate the magnitude of changes in gene expression in response to environmental stress by excess salt. Such treatment induces a water-conserving pathway of carbon assimilation (CAM) which is, at least in part, transcriptionally controlled. From a genomic library, 200 phage containing approximately 3200 kb (0.8% of the genome) were randomly selected. The inserts in these clones could be divided into four classes ranging from highly repetitive DNA (class I clones) to single-copy DNA (class IV clones). The inserts of the 166 clones of classes II to IV were digested with various restriction enzymes and the fragments were analyzed by hybridization with radioactively labelled mRNA isolated from stressed and unstressed leaves. We found that a total of ∼ 140 DNA fragments hybridized with the RNA probe. Among those, several differentially regulated transcripts were observed. Stress-dependent fluctuation of mRNA abundance was verified by Northern analyses: one mRNA, not detectable in unstressed leaves, appeared in stressed leaves, while steady-state levels of three transcripts decreased during stress. All regulated signals are derived from low abundance mRNAs, which may be missed during screening of cDNA libraries. We conclude from these results that, for the entire genome, on the order of more than one hundred genes are differentially regulated in response to salt stress.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...