ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-28
    Description: Correct pointing direction and scanning motions are essential in the operation of many flight payloads, such as balloon-borne telescopes and space-based X- ray and gamma-ray telescopes. Rotating unbalanced mass (RUM) devices have been recently proposed, implemented and successfully tested to produce a variety of scanning motions. Linear scans, raster scans, and circular scans have been successfully generated on a gimbaled payload using pairs of RUM devices. Theoretical analysis, computer simulations, and experiments have also been used to study the feasibility of using RUM devices to control instrument pointing direction, in addition to generating scanning motion. Dynamic modeling of a gimbaled payload equipped with a pair of RUM devices has been studied, and preliminary testing indicates that the pointing control is indeed feasible. However, there is also great potential for significant performance improvements through more advanced control system analysis, modeling and design. In this paper, modeling and control methods are described to achieve simultaneous scanning and pointing control of a gimbaled payload using rotating unbalance mass (RUM) devices. The model development work builds upon the results of Polites et al. and also some modeling approaches from robotics research. Results of some preliminary experiments are discussed and some nonlinear control methods will be proposed.
    Keywords: Mechanical Engineering
    Type: NASA-TM-112521 , NAS 1.15:112521 , AAS-97-065
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-13
    Description: A motor controller system uses a rotary sensor with a plurality of signal conditioning units, coupled to the rotary sensor. Each of these units, which is associated with a particular range of motor output shaft rotation rates, generate a feedback signal indicative of the position of the motor s output shaft. A controller (i) converts a selected motor output shaft rotation rate to a corresponding incremental amount of rotational movement for a selected fixed time period, (ii) selects, at periodic completions of the selected fixed time period, the feedback signal from one of the signal conditioning units for which the particular range of motor output shaft rotation rates associated therewith encompasses the selected motor output shaft rotation rate, and (iii) generates a motor drive signal based on a difference between the incremental amount of rotational movement and the feedback signal from the selected one of the signal conditioning Units.
    Keywords: Mechanical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-28
    Description: A method and system are provided for sensing the position of a rotor in a hybrid stepper motor. First and second Hall sensors are positioned in a spaced-apart relationship with the first and second armatures of the rotor such that the first and second Hall sensors generate electrical outputs that are 90.degree. out of phase with one another as the rotor rotates. The electrical outputs are adjusted relative to a reference, and the amplitude of the electrical outputs is further adjusted to account for spacing differences between the rotor and each of the first and second Hall sensors.
    Keywords: Mechanical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...