ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2004-12-14
    Description: Flame propagation through non-uniformly premixed gases occurs in several common combustion situations. As summarized in a previous conference paper, non-uniform premixed gas combustion has received scant attention compared to the more usual limiting cases of diffusion or uniformly premixed flames. It is the goal of this research to further our knowledge of layered combustion, in which a fuel concentration gradient exists normal to the direction of flame spread, in particular by focusing on the role that gravity plays. Gravity can affect flame propagation in at least three ways: through a hydrostatic pressure gradient, by altering the initial distribution of fuel vapor, and through buoyantly induced flows once ignition has occurred. An understanding of the phenomena involved is important to fire safety, especially aboard spacecraft since no microgravity data exist. The data obtained will also be useful to verify theoretical models of this problem, which are easier to implement if buoyancy is neglected.
    Keywords: Materials Processing
    Type: Fifth International Microgravity Combustion Workshop; 57-60
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: Recent theoretical investigations on graphite particle combustion have employed several levels of heterogeneous reaction models, ranging from global to elementary models, to describe the oxidation of carbon to gaseous products. Unlike the counterpart homogeneous reaction models, these heterogeneous reaction models are not well developed because of the difficulties associated with decoupling the physical characteristics of the solid (e.g. surface area taking part in combustion) from the chemical kinetic data. This is certainly true for porous graphite particle combustion, where heterogeneous and homogeneous reactions occur within the pores and play an important role in the overall oxidation process. As a result, there are considerable uncertainties of physical phenomena predicted using different heterogeneous kinetic models available in the literature. A good example, discussed later in this paper, is the predicted critical particle size below which the mass burning rate becomes exponentially small. The main goal of this study is to understand the basic mechanism controlling such rapid changes in burning rates, by developing a model where physical contributions are decoupled from chemical rate constants in a consistent manner. Another important goal of the proposed study is to develop a truly intrinsic, detailed heterogeneous reaction model for porous graphite combustion at high-temperatures, and to derive a systematically reduced heterogeneous reaction model in terms of the elementary reaction rate constants of the detailed model. The validation of chemical kinetic models describing the heterogeneous and homogeneous combustion in and around a spherically symmetric porous graphite particle can be considerably simplified by experimental measurements obtained under microgravity conditions. A vital component of this study is to conduct such supporting experiments on particle burning rate and surface temperature using NASA microgravity facilities, in close coordination with the theoretical effort. The basic understanding obtained and models developed as part of this project will be useful for optimal design of coal combustion devices. These models can also be extended to investigate the role of heterogeneous chemistry on pollutant formation pathways in combustion devices. The theoretical approach developed here, with pore diffusion effects decoupled from the chemical effects, can also be extended to understand the heterogeneous combustion of other porous fuels, for example, combustion of magnesium in a CO2 environment for propulsion in the Martian atmosphere.
    Keywords: Materials Processing
    Type: Fourth International Microgravity Combustion Workshop; 511-516; NASA-CP-10194
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: Experimental and numerical studies were conducted for weakly-strained, laminar premixed flames. The dynamic response and stability of such flames was assessed for a large number of mixtures. A new technique is proposed for the direct experimental determination of laminar flame speeds at the limit of near-zero strain rate.
    Keywords: Materials Processing
    Type: Fourth International Microgravity Combustion Workshop; 349-354; NASA-CP-10194
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-10
    Description: Combustion of solid fuel particles has many important applications, including power generation and space propulsion systems. The current models available for describing the combustion process of these particles, especially porous solid particles, include various simplifying approximations. One of the most limiting approximations is the lumping of the physical properties of the porous fuel with the heterogeneous chemical reaction rate constants [1]. The primary objective of the present work is to develop a rigorous modeling approach that could decouple such physical and chemical effects from the global heterogeneous reaction rates. For the purpose of validating this model, experiments with porous graphite particles of varying sizes and porosity are being performed under normal and micro gravity.
    Keywords: Aircraft Propulsion and Power
    Type: Seventh International Workshop on Microgravity Combustion and Chemically Reacting Systems; 9-12; NASA/CP-2003-212376-REV1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...