ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Marine sediments
  • HNLC
Collection
Keywords
Years
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 35 (2008): L07608, doi:10.1029/2008GL033294.
    Description: Here we show that labile particulate iron and manganese concentrations in the upper 500 m of the Western Subarctic Pacific, an iron-limited High Nutrient Low Chlorophyll (HNLC) region, have prominent subsurface maxima between 100–200 m, reaching 3 nM and 600 pM, respectively. The subsurface concentration maxima in particulate Fe are characterized by a more reduced oxidation state, suggesting a source from primary volcagenic minerals such as from the Kuril/Kamchatka margin. The systematics of these profiles suggest a consistently strong lateral advection of labile Mn and Fe from redox-mobilized labile sources at the continental shelf supplemented by a more variable source of Fe from the upper continental slope. This subsurface supply of iron from the continental margin is shallow enough to be accessible to the surface through winter upwelling and vertical mixing, and is likely a key source of bioavailable Fe to the HNLC North Pacific.
    Description: Funding from the US Department of Energy, Office of Science, Biological and Environmental Research Program (JB) and WHOI Postdoctoral Scholars program, the Richard B. Sellars Endowed Research Fund, and the Andrew W. Mellon Foundation Endowed Fund for Innovative Research (PL).
    Keywords: Iron ; Continental margin ; HNLC
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: image/tiff
    Format: text/plain
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution January, 1977
    Description: Particulate matter samples, split into 〈l μm, 1-53 μm, and 〉53 μm size fractions have been obtained using a Large Volume in situ Filtration System (LVFS) during the SOUTHLANT expedition, R/V CHAIN 115. Profiles to 400 m are reported for LVFS Stns. 2 and 4-8. Stns. 4, 5, and 8 (S. E. Atlantic, coastal waters near Walvis Bay and Cape Town, high biological productivity); Stns. 6 and 2 (S.E. Atlantic, Walvis Bay region and equatorial Atlantic, moderate productivity); and Sta. 7 (S.E. Atlantic, edge of central gyre, low productivity) formed a suite of samples for the study of the chemical, biological, morpholigical distributions and of the vertical mass flux of particulate matter as a function of biological productivity. All samples were analysed for Na, K, Mg, Ca, carbonate, opal, Sr, C and N and those from Sta. 2 were further analysed for P, Fe, δ13C, 7Be, 214Bi, 214Pb, (226Ra), 210Po, and 210Pb. Biological distributions of Acantharia, dinoflagellates, coccolithophorids, Foraminifera, diatoms, silicoflagellates, Radiolaria, and tintinnids were made by light microscopy (LM) and augmented by scanning electron microscopy (SEM). Size and morphological distributions of the 〉53 μm particles, especially Foraminifera, Acantharia, fecal pellets, and fecal matter have been determined by LM and SEM. The particle distributions were controlled at all stations by processes of production, consumption, fragmentation, and aggregation. Maxima in organism abundance and particulate mass were generally coincident. They were found nearest the surface when the mixed layer was absent or poorly developed, and at the base of the mixed layer at the other stations. Organism vertical distributions showed consistent features: Acantharia, and dinoflagellates were always nearest the surface; Foraminifera and diatoms were shallower than or at the base of the mixed layer; Radiolaria and tintinnids were found in the upper thermocline. Coccolithophorids and diatoms were the dominant sources of particulate carbonate and opal in the near surface waters, coccoliths and diatom fragments, deeper. Features of the distributions of particulate matter attributed to the feeding activities of zooplankton were: strong concentration gradients in organisms, mass, and organic matter; enrichment of the 〉53 μm fraction with coccoliths causing the steady decrease in 〉53 μm Si/carbonate ratio with depth from values as high as 45 to values near 1.0 at 400 m; the decrease in organic content with depth from values near 100 % near the surface to 50 and 60% at 400 m for the 〈53 and 〉53 μm size fractions; the fragmentation of most material below 100 m; and the production of fecal pellets and fecal matter which are carriers of fine material to the sea floor. Other features were: the nearly constant organic C/N ratios (7.3±0.5 δ) found for the 1-53 μm fractions at Stns. 4, 5, 6, and 8 compared with the steady increase observed at Stns. 2 and 7 with depth; particulate carbon was rather uniformy distributed below 200 m with concentrations showing a mild reflection of surface productivity; the 〈1 μC/N and δ13C values are lower and lighter than the 1-53 μm fraction, perhaps indicative of the presence of marine bacteria; the Ca/carbonate ratios in most samples significantly exceeded 1.0, values as high as 2.5 were observed at Sta. 8; the xs Ca and K have shallow regenerative cycles and contrast with Mg which is bound to a refractory component of organic matter; based on a organic C/ xs Ca ratio of 100-200:1 for surfàce samples, the cycling of xs Ca was calculated to be 1-2 x 1013mol/cm2/y compared with the production of carbonate, 7±2 x 1013 mol/cm2/y. Chemical effects noted were: organic matter had both binding capabilities and ion-exchange capacity for major and minor ions present in seawater. Acantharia (SrS04) dissolve most significantly below 200 m at Sta.2. The vertical mass fluxes through 400 m at Stas. 2, 5, 6, and 7 were calculated from size distributions measured in 1 m3 in seawater for Foramifera, fecal pellets, and fecal matter. Two flux models were used together with Junge distributions for these calculations. Fecal matter and Forainifera transported most mass at Stns. 2 and 5 where the fluxes were between 2 and 3, and 5 and 6 gm/cm2/1000y respectively; fècal matter, Foramnifera, and fecal pellets contributed equally to the .9-1.3gm/cm2/1000y flux at Sta. 6; and fecal pellets and Foraminifera were the carriers of 0.1-0.3 gm/cm2/1000y to the sea floor. Corresponding chemical fluxes of organic carbon, carbonate, and opal were: 80-90, 11-24, and ~10 mmol/cm2/1000y at Sta. 5; 15-20, 2.7-5.0 and 1.7-2.5 mmol/cm2/1000y at Sta. 6; 1-4, 0.6-1.5, and 0.1-0.3 mmol/cm2/1000y at Sta. 7, and 40-65, 4.6-7.4, and 4.9-7.9 mmol/cm2/1000y at station 2. Over 90% of the organic matter produced in the euphotic zone is recycled in the upper 400 m. The efficiency is nearly 99% in areas of low productivity; the organic to carbonate carbon ratios are highest at locations where the flux is greatest as are the Si/carbonate ratios. Besides carbonate, opal, celestite, and other mineral phases, organic matter may be a significant carrier of minor and trace elements to the deep ocean.
    Description: This work was supported by contract N00014-75-C029l from the Office of Naval Research and by the Doherty Foundation.
    Keywords: Marine sediments ; Particle size determination ; Particles ; Chain (Ship : 1958-) Cruise CH115
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 20 (2006): GB1006, doi:10.1029/2005GB002557.
    Description: Heightened biological activity was observed in February 1996 in the high-nutrient low-chlorophyll (HNLC) subarctic North Pacific Ocean, a region that is thought to be iron-limited. Here we provide evidence supporting the hypothesis that Ocean Station Papa (OSP) in the subarctic Pacific received a lateral supply of particulate iron from the continental margin off the Aleutian Islands in the winter, coincident with the observed biological bloom. Synchrotron X-ray analysis was used to describe the physical form, chemistry, and depth distributions of iron in size fractionated particulate matter samples. The analysis reveals that discrete micron-sized iron-rich hot spots are ubiquitous in the upper 200 m at OSP, more than 900 km from the closest coast. The specifics of the chemistry and depth profiles of the Fe hot spots trace them to the continental margins. We thus hypothesize that iron hot spots are a marker for the delivery of iron from the continental margin. We confirm the delivery of continental margin iron to the open ocean using an ocean general circulation model with an iron-like tracer source at the continental margin. We suggest that iron from the continental margin stimulated a wintertime phytoplankton bloom, partially relieving the HNLC condition.
    Description: This work was supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research (KP1202030) to J. K. B and by NSFATM-9987457 to I. F. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy at Lawrence Berkeley National Laboratory under contract DE-AC03-76SF00098.
    Keywords: Iron ; Continental margin ; HNLC ; Subarctic Pacific
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: image/tiff
    Format: text/plain
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...