ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (24)
  • Spacecraft Design, Testing and Performance  (15)
  • Man/System Technology and Life Support  (9)
  • 2005-2009  (24)
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: This viewgraph presentation gives a general overview of the X-43A program. The contents include: 1) X-43A Program Overview; 2) Vehicle Description; 3) Flight 1, MIB & Return to Flight; 4) Flight 2 and Results; and 5) Flight 3 and Results.
    Keywords: Spacecraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-06
    Description: A viewgraph presentation describing the hypersonics program at NASA Dryden Flight Research Center is shown. The topics include: 1) X-43A Program Overview; 2) Vehicle Description; 3) Flight 1, MIB & Return to Flight; 4) Flight 2 and Results; 5) Flight 3 and Results; and 6) Concluding Remarks
    Keywords: Spacecraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-27
    Description: In less than two years, the National Aeronautics and Space Administration (NASA) will launch the Ares I-X mission. This will be the first flight of the Ares I crew launch vehicle, which, together with the Ares V cargo launch vehicle, will send humans to the Moon and beyond. Personnel from the Ares I-X Mission Management Office (MMO) are finalizing designs and fabricating vehicle hardware for an April 2009 launch. Ares I-X will be a suborbital development flight test that will gather critical data about the flight dynamics of the integrated launch vehicle stack; understand how to control its roll during flight; better characterize the severe stage separation environments that the upper stage engine will experience during future flights; and demonstrate the first stage recovery system. NASA also will modify the launch infrastructure and ground and mission operations. The Ares I-X Flight Test Vehicle (FTV) will incorporate flight and mockup hardware similar in mass and weight to the operational vehicle. It will be powered by a four-segment Solid Rocket Booster (SRB), which is currently in Shuttle inventory, and will include a fifth spacer segment and new forward structures to make the booster approximately the same size and weight as the five-segment SRB. The Ares I-X flight profile will closely approximate the flight conditions that the Ares I will experience through Mach 4.5, up to approximately130,OOO feet and through maximum dynamic pressure ("Max Q") of approximately 800 pounds per square foot. Data from the Ares I-X flight will support the Ares I Critical Design Review (CDR), scheduled for 2010. Work continues on Ares I-X design and hardware fabrication. All of the individual elements are undergoing CDRs, followed by an integrated vehicle CDR in March 2008. The various hardware elements are on schedule to begin deliveries to Kennedy Space Center (KSC) in early September 2008.
    Keywords: Spacecraft Design, Testing and Performance
    Type: MSFC-2060 , International Astronautical Conference; 29 Sep. 3 Oct. 2008; Glasgow; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: KSC-2006-114 , C3P/NASA International Workshop; Jul 31, 2006 - Aug 04, 2006; Portland, OR; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: Charging System Analyzer Program (Nascap-2K) is a comprehensive update, revision, and extension of several NASA and Air Force codes for predicting electrical charging of spacecraft. Nascap-2K integrates the capabilities and models included in four independent programs: NASCAP/LEO for low-Earth orbits, NASCAP/GEO for geosynchronous orbits, POLAR for auroral charging in polar orbits, and DynaPAC (Dynamic Plasma Analysis Code) for time-dependent plasma interactions. While each of the earlier codes works well for the range of problems for which it was designed, by today s standards these codes are difficult to learn, cumbersome to use, and overly restrictive in their geometric modeling capabilities. Nascap-2K incorporates these models into a single software package that includes spacecraft surface modeling, spatial gridding, environmental specifications, calculating scripting, and post-processing analysis and visualization. The provided material properties database includes values from earlier programs as well as values from recent measurements. Development of Nascap-2K continues with future capabilities to include interactions with dense plasma such as those produced by electric propulsion.
    Keywords: Man/System Technology and Life Support
    Type: MFS-31939-1/2056-1 , NASA Tech Briefs, November 2006; 17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-19
    Description: During post-flight processing of STS-116, damage to crewmember Robert Curbeam's Phase VI Glove Thermal Micrometeoroid Garment was discovered. This damage consisted of: loss of RTV-157 palm pads on the thumb area on the right glove, a 0.75 inch cut in the Vectran adjacent to the seam and thumb pad (single event cut), constituting the worst glove damage ever recorded for the U.S. space program. The underlying bladder and restraint were found not be damaged by this event. Evaluation of glove damage found that the outer Vectran fibers were sliced as a result of contact with a sharp edge or pinch point rather than general wear or abrasion (commonly observed on the RTV pads). Damage to gloves was also noted on STS-118 and STS-120. One potential source of EMU glove damages are sharp crater lips on external handrails, generated by micrometeoroid and orbital debris (MMOD) impacts. In this paper, the results of a hypervelocity impact (HVI) test program on representative and actual ISS handrails are presented. These tests were performed in order to characterize impact damage profiles on ISS handrails and evaluate alternatives for limiting risk to future missions. It was determined that both penetrating and non-penetrating MMOD impacts on aluminum and steel ISS handrails are capable of generating protruding crater profiles which exceed the heights required for EMU glove abrasion risk by an order of magnitude. Testing demonstrated that flexible overwraps attached to the outside of existing handrails are capable of limiting contact between hazardous crater formations and crewmember gloves during extravehicular activity (EVA). Additionally, replacing metallic handrails with high strength, low ductility, fiber reinforced composite materials would limit the formation of protruding crater lips on new ISS modules.
    Keywords: Man/System Technology and Life Support
    Type: JSC-17548 , 5th European Conference on Space Debris; Mar 30, 2009 - Apr 02, 2009; Darmstadt; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: Auto-Generated Semantic Processing (AGSP) Services is a suite of software tools for automated generation of other computer programs, denoted cross-platform semantic adapters, that support interoperability of computer-based communication systems that utilize a variety of both new and legacy communication software running in a variety of operating- system/computer-hardware combinations. AGSP has numerous potential uses in military, space-exploration, and other government applications as well as in commercial telecommunications. The cross-platform semantic adapters take advantage of common features of computer- based communication systems to enforce semantics, messaging protocols, and standards of processing of streams of binary data to ensure integrity of data and consistency of meaning among interoperating systems. The auto-generation aspect of AGSP Services reduces development time and effort by emphasizing specification and minimizing implementation: In effect, the design, building, and debugging of software for effecting conversions among complex communication protocols, custom device mappings, and unique data-manipulation algorithms is replaced with metadata specifications that map to an abstract platform-independent communications model. AGSP Services is modular and has been shown to be easily integrable into new and legacy NASA flight and ground communication systems.
    Keywords: Man/System Technology and Life Support
    Type: KSC-13072 , NASA Tech Briefs, May 2009; 15
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-13
    Description: This viewgraph presentation reviews the standards for space flight hardware based on human capabilities and limitations. The contents include: 1) Scope; 2) Applicable documents; 3) General; 4) Human Physical Characteristics and Capabilities; 5) Human Performance and Cognition; 6) Natural and Induced Environments; 7) Habitability Functions; 8) Architecture; 9) Hardware and Equipment; 10) Crew Interfaces; 11) Spacesuits; 12) Operatons: Reserved; 13) Ground Maintenance and Assembly: Reserved; 14) Appendix A-Reference Documents; 15) Appendix N-Acronyms and 16) Appendix C-Definition. Volume 2 is supported by the Human Integration Design Handbook (HIDH)s.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-18589 , NASA Advisory Council Meeting; Jul 14, 2009 - Jul 15, 2009; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-13
    Description: In response to the Vision for Space Exploration, the National Aeronautics and Space Administration (NASA) has defined a new space exploration architecture to return humans to the Moon and prepare for human exploration of Mars. One of the first new developments will be the Ares I Crew Launch Vehicle (CLV), which will carry the Orion Crew Exploration Vehicle (CEV), into Low Earth Orbit (LEO) to support International Space Station (ISS) missions and, later, support lunar missions. As part of Ares I development, NASA will perform a series of Ares I flight tests. The tests will provide data that will inform the engineering and design process and verify the flight hardware and software. The data gained from the flight tests will be used to certify the new Ares/Orion vehicle for human space flight. The primary objectives of this first flight test (Ares I-X) are the following: Demonstrate control of a dynamically similar integrated Ares CLV/Orion CEV using Ares CLV ascent control algorithms; Perform an in-flight separation/staging event between an Ares I-similar First Stage and a representative Upper Stage; Demonstrate assembly and recovery of a new Ares CLV-like First Stage element at Kennedy Space Center (KSC); Demonstrate First Stage separation sequencing, and quantify First Stage atmospheric entry dynamics and parachute performance; and Characterize the magnitude of the integrated vehicle roll torque throughout the First Stage (powered) flight. This paper will provide an overview of the Ares I-X flight test process and details of the individual flight tests.
    Keywords: Spacecraft Design, Testing and Performance
    Type: 54th Joint JANNAF Propulsion Meeting; May 14, 2007 - May 17, 2007; Denver, Co; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Program to Optimize Simulated Trajectories II (POST2) is used as a basis for an end-to-end descent and landing trajectory simulation that is essential in determining design and integration capability and system performance of the lunar descent and landing system and environment models for the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. The POST2 simulation provides a six degree-of-freedom capability necessary to test, design and operate a descent and landing system for successful lunar landing. This paper presents advances in the development and model-implementation of the POST2 simulation, as well as preliminary system performance analysis, used for the testing and evaluation of ALHAT project system models.
    Keywords: Spacecraft Design, Testing and Performance
    Type: AIAA/AAS Astrodynamics Specialist Conference; Aug 18, 2008 - Aug 21, 2008; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...