ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: Human Performance Modeling (HPM) is a computer-aided job analysis software methodology used to generate predictions of complex human-automation integration and system flow patterns with the goal of improving operator and system safety. The use of HPM tools has recently been increasing due to reductions in computational cost, augmentations in the tools' fidelity, and usefulness in the generated output. An examination of an Air Man-machine Integration Design and Analysis System (Air MIDAS) model evaluating complex human-automation integration currently underway at NASA Ames Research Center will highlight the importance to occupational safety of considering both cognitive and physical aspects of performance when researching human error.
    Keywords: Man/System Technology and Life Support
    Type: International journal of occupational safety and ergonomics : JOSE (ISSN 1080-3548); Volume 8; 3; 339-51
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-03
    Description: This paper identifies and characterizes factors that contribute to operator workload in unmanned vehicle systems. Our objective is to provide a basis for developing models of workload for use in design and operation of complex human-machine systems. In 1986, Hart developed a foundational conceptual model of workload, which formed the basis for arguably the most widely used workload measurement techniquethe NASA Task Load Index. Since that time, however, there have been many advances in models and factor identification as well as workload control measures. Additionally, there is a need to further inventory and describe factors that contribute to human workload in light of technological advances, including automation and autonomy. Thus, we propose a conceptual framework for the workload construct and present a taxonomy of factors that can contribute to operator workload. These factors, referred to as workload drivers, are associated with a variety of system elements including the environment, task, equipment and operator. In addition, we discuss how workload moderators, such as automation and interface design, can be manipulated in order to influence operator workload. We contend that workload drivers, workload moderators, and the interactions among drivers and moderators all need to be accounted for when building complex, human-machine systems.
    Keywords: Air Transportation and Safety
    Type: NASA/TM-2017-219482 , ARC-E-DAA-TN40243
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: To meet the expected increases in air traffic demands, NASA and FAA are researching and developing Next Generation Air Transportation System (NextGen) concepts. NextGen will require substantial increases in the data available to pilots on the flight deck (e.g., weather,wake, traffic trajectory predictions, etc.) to support more precise and closely coordinated operations (e.g., self-separation, RNAV/RNP, and closely spaced parallel operations, CSPOs). These NextGen procedures and operations, along with the pilot's roles and responsibilities, must be designed with consideration of the pilot's capabilities and limitations. Failure to do so will leave the pilots, and thus the entire aviation system, vulnerable to error. A validated Man-machine Integration and design Analysis System (MIDAS) v5 model was extended to evaluate anticipated changes to flight deck and controller roles and responsibilities in NextGen approach and Land operations. Compared to conditions when the controllers are responsible for separation on decent to land phase of flight, the output from these model predictions suggest that the flight deck response time to detect the lead aircraft blunder will decrease, pilot scans to the navigation display will increase, and workload will increase.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN4873 , 4th International Conference on Applied Human Factors and Ergonomics (AHFE); Sep 15, 2012; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: The Closely Spaced Parallel Operations (CSPO) scenario is a complex, human performance model scenario that tested alternate operator roles and responsibilities to a series of off-nominal operations on approach and landing (see Gore, Hooey, Mahlstedt, Foyle, 2013). The model links together the procedures, equipment, crewstation, and external environment to produce predictions of operator performance in response to Next Generation system designs, like those expected in the National Airspaces NextGen concepts. The task analysis that is contained in the present report comes from the task analysis window in the MIDAS software. These tasks link definitions and states for equipment components, environmental features as well as operational contexts. The current task analysis culminated in 3300 tasks that included over 1000 Subject Matter Expert (SME)-vetted, re-usable procedural sets for three critical phases of flight; the Descent, Approach, and Land procedural sets (see Gore et al., 2011 for a description of the development of the tasks included in the model; Gore, Hooey, Mahlstedt, Foyle, 2013 for a description of the model, and its results; Hooey, Gore, Mahlstedt, Foyle, 2013 for a description of the guidelines that were generated from the models results; Gore, Hooey, Foyle, 2012 for a description of the models implementation and its settings). The rollout, after landing checks, taxi to gate and arrive at gate illustrated in Figure 1 were not used in the approach and divert scenarios exercised. The other networks in Figure 1 set up appropriate context settings for the flight deck.The current report presents the models task decomposition from the tophighest level and decomposes it to finer-grained levels. The first task that is completed by the model is to set all of the initial settings for the scenario runs included in the model (network 75 in Figure 1). This initialization process also resets the CAD graphic files contained with MIDAS, as well as the embedded operator models that comprise MIDAS. Following the initial settings, the model progresses to begin the first tasks required of the two flight deck operators, the Captain (CA) and the First Officer (FO). The task sets will initialize operator specific settings prior to loading all of the alerts, probes, and other events that occur in the scenario. As a note, the CA and FO were terms used in developing this model but the CA can also be thought of as the Pilot Flying (PF), while the FO can be considered the Pilot-Not-Flying (PNF)or Pilot Monitoring (PM). As such, the document refers to the operators as PFCA and PNFFO respectively.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN8279
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: This software package interfaces with various gas stream devices such as pressure transducers, flow meters, flow controllers, valves, and analyzers such as a mass spectrometer. The software provides excellent user interfacing with various windows that provide time-domain graphs, valve state buttons, priority- colored messages, and warning icons. The user can configure the software to save as much or as little data as needed to a comma-delimited file. The software also includes an intuitive scripting language for automated processing. The configuration allows for the assignment of measured values or calibration so that raw signals can be viewed as usable pressures, flows, or concentrations in real time. The software is based on those used in two safety systems for shuttle processing and one volcanic gas analysis system. Mass analyzers typically have very unique applications and vary from job to job. As such, software available on the market is usually inadequate or targeted on a specific application (such as EPA methods). The goal was to develop powerful software that could be used with prototype systems. The key problem was to generalize the software to be easily and quickly reconfigurable. At Kennedy Space Center (KSC), the prior art consists of two primary methods. The first method was to utilize Lab- VIEW and a commercial data acquisition system. This method required rewriting code for each different application and only provided raw data. To obtain data in engineering units, manual calculations were required. The second method was to utilize one of the embedded computer systems developed for another system. This second method had the benefit of providing data in engineering units, but was limited in the number of control parameters.
    Keywords: Man/System Technology and Life Support
    Type: KSC-13643 , NASA Tech Briefs, May 2012; 6-7
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-12
    Description: The current day flight deck operational environment consists of a two-person Captain/First Officer crew. A concept of operations (ConOps) to reduce the commercial cockpit to a single pilot from the current two pilot crew is termed Single Pilot Operations (SPO). This concept has been under study by researchers in the Flight Deck Display Research Laboratory (FDDRL) at the National Aeronautics and Space Administration's (NASA) Ames (Johnson, Comerford, Lachter, Battiste, Feary, and Mogford, 2012) and researchers from Langley Research Centers (Schutte et al., 2007). Transitioning from a two pilot crew to a single pilot crew will undoubtedly require changes in operational procedures, crew coordination, use of automation, and in how the roles and responsibilities of the flight deck and ATC are conceptualized in order to maintain the high levels of safety expected of the US National Airspace System. These modifications will affect the roles and the subsequent tasks that are required of the various operators in the NextGen environment. The current report outlines the process taken to identify and document the tasks required by the crew according to a number of operational scenarios studied by the FDDRL between the years 2012-2014. A baseline task decomposition has been refined to represent the tasks consistent with a new set of entities, tasks, roles, and responsibilities being explored by the FDDRL as the move is made towards SPO. Information from Subject Matter Expert interviews, participation in FDDRL experimental design meetings, and study observation was used to populate and refine task sets that were developed as part of the SPO task analyses. The task analysis is based upon the proposed ConOps for the third FDDRL SPO study. This experiment possessed nine different entities operating in six scenarios using a variety of SPO-related automation and procedural activities required to guide safe and efficient aircraft operations. The task analysis presents the roles and responsibilities in a manner that can facilitate testing future scenarios. Measures of task count and workload were defined and analyzed to assess the impact of transitioning to a SPO environment.
    Keywords: Air Transportation and Safety
    Type: NASA/TM-2015-218480 , ARC-E-DAA-TN19738
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: A system that comprises optical and electronic subsystems has been developed as an infrastructure for a spectroradiometer that measures time-dependent spectral radiance of the daylight sky, in a narrow field of view (having angular width of the order of 1 ) centered on the zenith, in several spectral bands in the wavelength range from 0.3 to 2.2 m. This system is used in conjunction with two commercially available monolithic spectrometers: a silicon-based one for wavelengths from 0.3 to 1.1 m and a gallium arsenide-based one for wavelengths from 1.05 to 2.2 m (see figure). The role of this system is to collect the light from the affected region of the sky, collimate the light, deliver the collimated light to the monolithic spectrometers, and process the electronic outputs of the spectrometers
    Keywords: Man/System Technology and Life Support
    Type: ARC-15714-1 , NASA Tech Briefs, September 2008; 31
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-13
    Description: Modeling and simulation (M&S) plays an important role when complex human-system notions are being proposed, developed and tested within the system design process. National Aeronautics and Space Administration (NASA) as an agency uses many different types of M&S approaches for predicting human-system interactions, especially when it is early in the development phase of a conceptual design. NASA Ames Research Center possesses a number of M&S capabilities ranging from airflow, flight path models, aircraft models, scheduling models, human performance models (HPMs), and bioinformatics models among a host of other kinds of M&S capabilities that are used for predicting whether the proposed designs will benefit the specific mission criteria. The Man-Machine Integration Design and Analysis System (MIDAS) is a NASA ARC HPM software tool that integrates many models of human behavior with environment models, equipment models, and procedural / task models. The challenge to model comprehensibility is heightened as the number of models that are integrated and the requisite fidelity of the procedural sets are increased. Model transparency is needed for some of the more complex HPMs to maintain comprehensibility of the integrated model performance. This will be exemplified in a recent MIDAS v5 application model and plans for future model refinements will be presented.
    Keywords: Man/System Technology and Life Support
    Type: ARC-E-DAA-TN1351 , 19th Annual Conference on Behavior Representation in Modeling and Simulation (BRiMS); Mar 21, 2010 - Mar 24, 2010; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The Man-machine Integration Design and Analysis System (MIDAS) is an integrated human performance modeling software tool that is based on mechanisms that underlie and cause human behavior. A PC-Windows version of MIDAS has been created that integrates the anthropometric character "Jack (TM)" with MIDAS' validated perceptual and attention mechanisms. MIDAS now models multiple simulated humans engaging in goal-related behaviors. New capabilities include the ability to predict situations in which errors and/or performance decrements are likely due to a variety of factors including concurrent workload and performance influencing factors (PIFs). This paper describes a new model that predicts the effects of microgravity on a mission specialist's performance, and its first application to simulating the task of conducting a Life Sciences experiment in space according to a sequential or parallel schedule of performance.
    Keywords: Man/System Technology and Life Support
    Type: SAE 2005-01-2701 , SAE 2005 Transactions Journal of Passenger Cars: Electronic and Electrical Systems; 752-759
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Pilot response to off-nominal (very rare) events represents a critical component to understanding the safety of next generation airspace technology and procedures. We describe a meta-analysis designed to integrate the existing data regarding pilot accuracy of detecting rare, unexpected events such as runway incursions in realistic flight simulations. Thirty-five studies were identified and pilot responses were categorized by expectancy, event location, and whether the pilot was flying with a highway-in-the-sky display. All three dichotomies produced large, significant effects on event miss rate. A model of human attention and noticing, N-SEEV, was then used to predict event noticing performance as a function of event salience and expectancy, and retinal eccentricity. Eccentricity is predicted from steady state scanning by the SEEV model of attention allocation. The model was used to predict miss rates for the expectancy, location and highway-in-the-sky (HITS) effects identified in the meta-analysis. The correlation between model-predicted results and data from the meta-analysis was 0.72.
    Keywords: Air Transportation and Safety
    Type: 53rd Annual Meeting of the Human Factors and Ergonomics Society`; Oct 19, 2009 - Oct 23, 2009; San Antonio, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...