ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-07-22
    Description: Acquired uniparental disomy (aUPD) is a common feature of cancer genomes, leading to loss of heterozygosity. aUPD is associated not only with loss-of-function mutations of tumour suppressor genes, but also with gain-of-function mutations of proto-oncogenes. Here we show unique gain-of-function mutations of the C-CBL (also known as CBL) tumour suppressor that are tightly associated with aUPD of the 11q arm in myeloid neoplasms showing myeloproliferative features. The C-CBL proto-oncogene, a cellular homologue of v-Cbl, encodes an E3 ubiquitin ligase and negatively regulates signal transduction of tyrosine kinases. Homozygous C-CBL mutations were found in most 11q-aUPD-positive myeloid malignancies. Although the C-CBL mutations were oncogenic in NIH3T3 cells, c-Cbl was shown to functionally and genetically act as a tumour suppressor. C-CBL mutants did not have E3 ubiquitin ligase activity, but inhibited that of wild-type C-CBL and CBL-B (also known as CBLB), leading to prolonged activation of tyrosine kinases after cytokine stimulation. c-Cbl(-/-) haematopoietic stem/progenitor cells (HSPCs) showed enhanced sensitivity to a variety of cytokines compared to c-Cbl(+/+) HSPCs, and transduction of C-CBL mutants into c-Cbl(-/-) HSPCs further augmented their sensitivities to a broader spectrum of cytokines, including stem-cell factor (SCF, also known as KITLG), thrombopoietin (TPO, also known as THPO), IL3 and FLT3 ligand (FLT3LG), indicating the presence of a gain-of-function that could not be attributed to a simple loss-of-function. The gain-of-function effects of C-CBL mutants on cytokine sensitivity of HSPCs largely disappeared in a c-Cbl(+/+) background or by co-transduction of wild-type C-CBL, which suggests the pathogenic importance of loss of wild-type C-CBL alleles found in most cases of C-CBL-mutated myeloid neoplasms. Our findings provide a new insight into a role of gain-of-function mutations of a tumour suppressor associated with aUPD in the pathogenesis of some myeloid cancer subsets.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sanada, Masashi -- Suzuki, Takahiro -- Shih, Lee-Yung -- Otsu, Makoto -- Kato, Motohiro -- Yamazaki, Satoshi -- Tamura, Azusa -- Honda, Hiroaki -- Sakata-Yanagimoto, Mamiko -- Kumano, Keiki -- Oda, Hideaki -- Yamagata, Tetsuya -- Takita, Junko -- Gotoh, Noriko -- Nakazaki, Kumi -- Kawamata, Norihiko -- Onodera, Masafumi -- Nobuyoshi, Masaharu -- Hayashi, Yasuhide -- Harada, Hiroshi -- Kurokawa, Mineo -- Chiba, Shigeru -- Mori, Hiraku -- Ozawa, Keiya -- Omine, Mitsuhiro -- Hirai, Hisamaru -- Nakauchi, Hiromitsu -- Koeffler, H Phillip -- Ogawa, Seishi -- 2R01CA026038-30/CA/NCI NIH HHS/ -- England -- Nature. 2009 Aug 13;460(7257):904-8. doi: 10.1038/nature08240. Epub 2009 Jul 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Genomics Project, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19620960" target="_blank"〉PubMed〈/a〉
    Keywords: Allelic Imbalance ; Amino Acid Sequence ; Animals ; Base Sequence ; Chromosomes, Human, Pair 11/genetics ; Female ; *Genes, Tumor Suppressor ; Humans ; Leukemia, Myeloid/*genetics/metabolism/pathology ; Male ; Mice ; Mice, Knockout ; Mice, Nude ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/genetics/*metabolism ; Mutation ; NIH 3T3 Cells ; Neoplasm Transplantation ; Oncogenes/genetics ; Phosphorylation ; Protein Conformation ; Proto-Oncogene Proteins c-cbl/antagonists & ; inhibitors/chemistry/deficiency/*genetics/*metabolism ; Ubiquitination ; Uniparental Disomy/genetics ; ras Proteins/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-02-14
    Description: We often evaluate the self and others from social comparisons. We feel envy when the target person has superior and self-relevant characteristics. Schadenfreude occurs when envied persons fall from grace. To elucidate the neurocognitive mechanisms of envy and schadenfreude, we conducted two functional magnetic resonance imaging studies. In study one, the participants read information concerning target persons characterized by levels of possession and self-relevance of comparison domains. When the target person's possession was superior and self-relevant, stronger envy and stronger anterior cingulate cortex (ACC) activation were induced. In study two, stronger schadenfreude and stronger striatum activation were induced when misfortunes happened to envied persons. ACC activation in study one predicted ventral striatum activation in study two. Our findings document mechanisms of painful emotion, envy, and a rewarding reaction, schadenfreude.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Takahashi, Hidehiko -- Kato, Motoichiro -- Matsuura, Masato -- Mobbs, Dean -- Suhara, Tetsuya -- Okubo, Yoshiro -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2009 Feb 13;323(5916):937-9. doi: 10.1126/science.1165604.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Neuroimaging, National Institute of Radiological Sciences, 9-1, 4-chome, Anagawa, Inage-ku, Chiba, 263-8555, Japan. hidehiko@nirs.go.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19213918" target="_blank"〉PubMed〈/a〉
    Keywords: Basal Ganglia/physiology ; Brain/*physiology ; *Brain Mapping ; *Emotions ; Female ; Gyrus Cinguli/physiology ; Happiness ; Humans ; *Jealousy ; Magnetic Resonance Imaging ; Male ; *Pain/psychology ; Reward ; Self Concept ; Social Behavior ; *Social Perception ; Young Adult
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-12-17
    Description: Song-learning birds and humans share independently evolved similarities in brain pathways for vocal learning that are essential for song and speech and are not found in most other species. Comparisons of brain transcriptomes of song-learning birds and humans relative to vocal nonlearners identified convergent gene expression specializations in specific song and speech brain regions of avian vocal learners and humans. The strongest shared profiles relate bird motor and striatal song-learning nuclei, respectively, with human laryngeal motor cortex and parts of the striatum that control speech production and learning. Most of the associated genes function in motor control and brain connectivity. Thus, convergent behavior and neural connectivity for a complex trait are associated with convergent specialized expression of multiple genes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4385736/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4385736/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pfenning, Andreas R -- Hara, Erina -- Whitney, Osceola -- Rivas, Miriam V -- Wang, Rui -- Roulhac, Petra L -- Howard, Jason T -- Wirthlin, Morgan -- Lovell, Peter V -- Ganapathy, Ganeshkumar -- Mouncastle, Jacquelyn -- Moseley, M Arthur -- Thompson, J Will -- Soderblom, Erik J -- Iriki, Atsushi -- Kato, Masaki -- Gilbert, M Thomas P -- Zhang, Guojie -- Bakken, Trygve -- Bongaarts, Angie -- Bernard, Amy -- Lein, Ed -- Mello, Claudio V -- Hartemink, Alexander J -- Jarvis, Erich D -- DP1 OD000448/OD/NIH HHS/ -- R01 DC007218/DC/NIDCD NIH HHS/ -- R01DC007218/DC/NIDCD NIH HHS/ -- R21 DC007478/DC/NIDCD NIH HHS/ -- R24 GM092842/GM/NIGMS NIH HHS/ -- R24GM092842/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Dec 12;346(6215):1256846. doi: 10.1126/science.1256846.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA. apfenning@csail.mit.edu amink@cs.duke.edu jarvis@neuro.duke.edu. ; Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA. ; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA. ; Duke Proteomics and Metabolomics Core Facility, Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA. ; Laboratory for Symbolic Cognitive Development, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. ; Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, 1350 Copenhagen, Denmark. Trace and Environmental DNA Laboratory, Department of Environment and Agriculture, Curtin University, Perth, Western Australia 6102, Australia. ; China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China. Centre for Social Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark. ; Allen Institute for Brain Science, Seattle, WA 98103, USA. ; Department of Computer Science, Duke University, Durham, NC 27708, USA. apfenning@csail.mit.edu amink@cs.duke.edu jarvis@neuro.duke.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25504733" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Animals ; Birds/genetics/physiology ; Brain/anatomy & histology/*physiology ; Brain Mapping ; Corpus Striatum/anatomy & histology/physiology ; Evolution, Molecular ; Finches/*genetics/*physiology ; *Gene Expression Regulation ; Humans ; *Learning ; Male ; Motor Cortex/anatomy & histology/physiology ; Neural Pathways ; Species Specificity ; *Speech ; Transcription, Genetic ; *Transcriptome ; *Vocalization, Animal
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...