ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-03-05
    Description: The presence of hundreds of copies of mitochondrial DNA (mtDNA) in each human cell poses a challenge for the complete characterization of mtDNA genomes by conventional sequencing technologies. Here we describe digital sequencing of mtDNA genomes with the use of massively parallel sequencing-by-synthesis approaches. Although the mtDNA of human cells is considered to be homogeneous, we found widespread heterogeneity (heteroplasmy) in the mtDNA of normal human cells. Moreover, the frequency of heteroplasmic variants varied considerably between different tissues in the same individual. In addition to the variants identified in normal tissues, cancer cells harboured further homoplasmic and heteroplasmic mutations that could also be detected in patient plasma. These studies provide insights into the nature and variability of mtDNA sequences and have implications for mitochondrial processes during embryogenesis, cancer biomarker development and forensic analysis. In particular, they demonstrate that individual humans are characterized by a complex mixture of related mitochondrial genotypes rather than a single genotype.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3176451/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3176451/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉He, Yiping -- Wu, Jian -- Dressman, Devin C -- Iacobuzio-Donahue, Christine -- Markowitz, Sanford D -- Velculescu, Victor E -- Diaz, Luis A Jr -- Kinzler, Kenneth W -- Vogelstein, Bert -- Papadopoulos, Nickolas -- CA 43460/CA/NCI NIH HHS/ -- CA 62924/CA/NCI NIH HHS/ -- CA121113/CA/NCI NIH HHS/ -- CA57345/CA/NCI NIH HHS/ -- P50 CA062924/CA/NCI NIH HHS/ -- P50 CA062924-06/CA/NCI NIH HHS/ -- R01 CA057345/CA/NCI NIH HHS/ -- R01 CA057345-08/CA/NCI NIH HHS/ -- R01 CA121113/CA/NCI NIH HHS/ -- R01 CA121113-04/CA/NCI NIH HHS/ -- R37 CA043460/CA/NCI NIH HHS/ -- R37 CA043460-16/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Mar 25;464(7288):610-4. doi: 10.1038/nature08802. Epub 2010 Mar 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Ludwig Center for Cancer Genetics and Therapeutics and The Howard Hughes Medical Institute at The Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland 21231, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20200521" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Aged ; Child ; Colorectal Neoplasms/*pathology ; DNA, Mitochondrial/blood/*genetics ; Female ; Gene Frequency ; *Genetic Heterogeneity ; Genetic Variation ; Genotype ; Humans ; Intestinal Mucosa/cytology/pathology ; Male ; Middle Aged ; Mutation/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-02-26
    Description: The fire ant Solenopsis invicta is a significant pest that was inadvertently introduced into the southern United States almost a century ago and more recently into California and other regions of the world. An assessment of genetic variation at a diverse set of molecular markers in 2144 fire ant colonies from 75 geographic sites worldwide revealed that at least nine separate introductions of S. invicta have occurred into newly invaded areas and that the main southern U.S. population is probably the source of all but one of these introductions. The sole exception involves a putative serial invasion from the southern United States to California to Taiwan. These results illustrate in stark fashion a severe negative consequence of an increasingly massive and interconnected global trade and travel system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ascunce, Marina S -- Yang, Chin-Cheng -- Oakey, Jane -- Calcaterra, Luis -- Wu, Wen-Jer -- Shih, Cheng-Jen -- Goudet, Jerome -- Ross, Kenneth G -- Shoemaker, DeWayne -- New York, N.Y. -- Science. 2011 Feb 25;331(6020):1066-8. doi: 10.1126/science.1198734.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉USDA-ARS Center for Medical, Agricultural, and Veterinary Entomology, 1600/1700 Southwest 23rd Drive, Gainesville, FL, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21350177" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Ants/genetics ; Asia ; Australia ; Bayes Theorem ; Commerce ; Computer Simulation ; DNA, Mitochondrial/genetics ; Female ; Genes, Insect ; Genetic Variation ; Genotype ; Haplotypes ; *Introduced Species ; Male ; Microsatellite Repeats ; Molecular Sequence Data ; Population Dynamics ; Sequence Analysis, DNA ; South America ; Travel ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-12-15
    Description: Epigenetic regulators represent a promising new class of therapeutic targets for cancer. Enhancer of zeste homolog 2 (EZH2), a subunit of Polycomb repressive complex 2 (PRC2), silences gene expression via its histone methyltransferase activity. We found that the oncogenic function of EZH2 in cells of castration-resistant prostate cancer is independent of its role as a transcriptional repressor. Instead, it involves the ability of EZH2 to act as a coactivator for critical transcription factors including the androgen receptor. This functional switch is dependent on phosphorylation of EZH2 and requires an intact methyltransferase domain. Hence, targeting the non-PRC2 function of EZH2 may have therapeutic efficacy for treating metastatic, hormone-refractory prostate cancer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3625962/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3625962/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Kexin -- Wu, Zhenhua Jeremy -- Groner, Anna C -- He, Housheng Hansen -- Cai, Changmeng -- Lis, Rosina T -- Wu, Xiaoqiu -- Stack, Edward C -- Loda, Massimo -- Liu, Tao -- Xu, Han -- Cato, Laura -- Thornton, James E -- Gregory, Richard I -- Morrissey, Colm -- Vessella, Robert L -- Montironi, Rodolfo -- Magi-Galluzzi, Cristina -- Kantoff, Philip W -- Balk, Steven P -- Liu, X Shirley -- Brown, Myles -- CA090381/CA/NCI NIH HHS/ -- CA097186/CA/NCI NIH HHS/ -- CA111803/CA/NCI NIH HHS/ -- CA131945/CA/NCI NIH HHS/ -- CA166507/CA/NCI NIH HHS/ -- CA85859/CA/NCI NIH HHS/ -- CA89021/CA/NCI NIH HHS/ -- CA90381/CA/NCI NIH HHS/ -- GM99409/GM/NIGMS NIH HHS/ -- K99 CA166507/CA/NCI NIH HHS/ -- P50 CA090381/CA/NCI NIH HHS/ -- R01 GM099409/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Dec 14;338(6113):1465-9. doi: 10.1126/science.1227604.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23239736" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Castration ; Cell Line, Tumor ; Cohort Studies ; Gene Expression Regulation, Neoplastic ; Gene Silencing ; Humans ; Jumonji Domain-Containing Histone Demethylases/metabolism ; Male ; Methyltransferases/chemistry/genetics/metabolism ; Mice ; Mice, Inbred ICR ; Mice, SCID ; Oncogene Proteins/genetics/*metabolism ; Polycomb Repressive Complex 2/genetics/*metabolism ; Prostatic Neoplasms/genetics/*metabolism/mortality ; Protein Structure, Tertiary ; Receptors, Androgen/metabolism ; Xenograft Model Antitumor Assays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-11-15
    Description: Glucose homeostasis is a vital and complex process, and its disruption can cause hyperglycaemia and type II diabetes mellitus. Glucokinase (GK), a key enzyme that regulates glucose homeostasis, converts glucose to glucose-6-phosphate in pancreatic beta-cells, liver hepatocytes, specific hypothalamic neurons, and gut enterocytes. In hepatocytes, GK regulates glucose uptake and glycogen synthesis, suppresses glucose production, and is subject to the endogenous inhibitor GK regulatory protein (GKRP). During fasting, GKRP binds, inactivates and sequesters GK in the nucleus, which removes GK from the gluconeogenic process and prevents a futile cycle of glucose phosphorylation. Compounds that directly hyperactivate GK (GK activators) lower blood glucose levels and are being evaluated clinically as potential therapeutics for the treatment of type II diabetes mellitus. However, initial reports indicate that an increased risk of hypoglycaemia is associated with some GK activators. To mitigate the risk of hypoglycaemia, we sought to increase GK activity by blocking GKRP. Here we describe the identification of two potent small-molecule GK-GKRP disruptors (AMG-1694 and AMG-3969) that normalized blood glucose levels in several rodent models of diabetes. These compounds potently reversed the inhibitory effect of GKRP on GK activity and promoted GK translocation both in vitro (isolated hepatocytes) and in vivo (liver). A co-crystal structure of full-length human GKRP in complex with AMG-1694 revealed a previously unknown binding pocket in GKRP distinct from that of the phosphofructose-binding site. Furthermore, with AMG-1694 and AMG-3969 (but not GK activators), blood glucose lowering was restricted to diabetic and not normoglycaemic animals. These findings exploit a new cellular mechanism for lowering blood glucose levels with reduced potential for hypoglycaemic risk in patients with type II diabetes mellitus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lloyd, David J -- St Jean, David J Jr -- Kurzeja, Robert J M -- Wahl, Robert C -- Michelsen, Klaus -- Cupples, Rod -- Chen, Michelle -- Wu, John -- Sivits, Glenn -- Helmering, Joan -- Komorowski, Renee -- Ashton, Kate S -- Pennington, Lewis D -- Fotsch, Christopher -- Vazir, Mukta -- Chen, Kui -- Chmait, Samer -- Zhang, Jiandong -- Liu, Longbin -- Norman, Mark H -- Andrews, Kristin L -- Bartberger, Michael D -- Van, Gwyneth -- Galbreath, Elizabeth J -- Vonderfecht, Steven L -- Wang, Minghan -- Jordan, Steven R -- Veniant, Murielle M -- Hale, Clarence -- England -- Nature. 2013 Dec 19;504(7480):437-40. doi: 10.1038/nature12724. Epub 2013 Nov 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Metabolic Disorders, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, USA. ; Department of Therapeutic Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, USA. ; Department of Comparative Biology & Safety Sciences, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24226772" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Animals ; Blood Glucose/metabolism ; Carrier Proteins/*antagonists & inhibitors/metabolism ; Cell Nucleus/enzymology ; Crystallography, X-Ray ; Diabetes Mellitus, Type 2/blood/*drug therapy/enzymology ; Disease Models, Animal ; Hepatocytes ; Humans ; Hyperglycemia/blood/drug therapy/enzymology ; Hypoglycemic Agents/chemistry/*pharmacology/*therapeutic use ; Liver/cytology/enzymology/metabolism ; Male ; Models, Molecular ; Organ Specificity ; Phosphorylation/drug effects ; Piperazines/chemistry/metabolism/pharmacology/therapeutic use ; Protein Binding/drug effects ; Protein Transport/drug effects ; Rats ; Rats, Wistar ; Sulfonamides/chemistry/metabolism/pharmacology/therapeutic use
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-03-29
    Description: Oesophageal cancer is one of the most aggressive cancers and is the sixth leading cause of cancer death worldwide. Approximately 70% of global oesophageal cancer cases occur in China, with oesophageal squamous cell carcinoma (ESCC) being the histopathological form in the vast majority of cases (〉90%). Currently, there are limited clinical approaches for the early diagnosis and treatment of ESCC, resulting in a 10% five-year survival rate for patients. However, the full repertoire of genomic events leading to the pathogenesis of ESCC remains unclear. Here we describe a comprehensive genomic analysis of 158 ESCC cases, as part of the International Cancer Genome Consortium research project. We conducted whole-genome sequencing in 17 ESCC cases and whole-exome sequencing in 71 cases, of which 53 cases, plus an additional 70 ESCC cases not used in the whole-genome and whole-exome sequencing, were subjected to array comparative genomic hybridization analysis. We identified eight significantly mutated genes, of which six are well known tumour-associated genes (TP53, RB1, CDKN2A, PIK3CA, NOTCH1, NFE2L2), and two have not previously been described in ESCC (ADAM29 and FAM135B). Notably, FAM135B is identified as a novel cancer-implicated gene as assayed for its ability to promote malignancy of ESCC cells. Additionally, MIR548K, a microRNA encoded in the amplified 11q13.3-13.4 region, is characterized as a novel oncogene, and functional assays demonstrate that MIR548K enhances malignant phenotypes of ESCC cells. Moreover, we have found that several important histone regulator genes (MLL2 (also called KMT2D), ASH1L, MLL3 (KMT2C), SETD1B, CREBBP and EP300) are frequently altered in ESCC. Pathway assessment reveals that somatic aberrations are mainly involved in the Wnt, cell cycle and Notch pathways. Genomic analyses suggest that ESCC and head and neck squamous cell carcinoma share some common pathogenic mechanisms, and ESCC development is associated with alcohol drinking. This study has explored novel biological markers and tumorigenic pathways that would greatly improve therapeutic strategies for ESCC.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Song, Yongmei -- Li, Lin -- Ou, Yunwei -- Gao, Zhibo -- Li, Enmin -- Li, Xiangchun -- Zhang, Weimin -- Wang, Jiaqian -- Xu, Liyan -- Zhou, Yong -- Ma, Xiaojuan -- Liu, Lingyan -- Zhao, Zitong -- Huang, Xuanlin -- Fan, Jing -- Dong, Lijia -- Chen, Gang -- Ma, Liying -- Yang, Jie -- Chen, Longyun -- He, Minghui -- Li, Miao -- Zhuang, Xuehan -- Huang, Kai -- Qiu, Kunlong -- Yin, Guangliang -- Guo, Guangwu -- Feng, Qiang -- Chen, Peishan -- Wu, Zhiyong -- Wu, Jianyi -- Ma, Ling -- Zhao, Jinyang -- Luo, Longhai -- Fu, Ming -- Xu, Bainan -- Chen, Bo -- Li, Yingrui -- Tong, Tong -- Wang, Mingrong -- Liu, Zhihua -- Lin, Dongxin -- Zhang, Xiuqing -- Yang, Huanming -- Wang, Jun -- Zhan, Qimin -- England -- Nature. 2014 May 1;509(7498):91-5. doi: 10.1038/nature13176. Epub 2014 Mar 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China [2]. ; 1] BGI-Shenzhen, Shenzhen 518083, Guangdong 518083, China [2]. ; 1] State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China [2] Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, China [3]. ; 1] Department of Biochemistry and Molecular Biology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China [2]. ; State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China. ; BGI-Shenzhen, Shenzhen 518083, Guangdong 518083, China. ; Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, China. ; Department of Tumor Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, Guangdong, China. ; Department of Biochemistry and Molecular Biology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China. ; Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24670651" target="_blank"〉PubMed〈/a〉
    Keywords: Alcohol Drinking/adverse effects ; Biomarkers, Tumor/genetics ; Carcinoma, Squamous Cell/*genetics/pathology ; Cell Cycle/genetics ; Chromosomes, Human, Pair 11/genetics ; Comparative Genomic Hybridization ; DNA Copy Number Variations/genetics ; Esophageal Neoplasms/*genetics/pathology ; Exome/genetics ; Female ; Genome, Human/*genetics ; Genomics ; Histones/metabolism ; Humans ; Male ; MicroRNAs/genetics ; Mutation/*genetics ; Oncogenes/genetics ; Phenotype ; Receptors, Notch/genetics ; Risk Factors ; Wnt Signaling Pathway/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-02-04
    Description: Effective clinical management of prostate cancer (PCA) has been challenged by significant intratumoural heterogeneity on the genomic and pathological levels and limited understanding of the genetic elements governing disease progression. Here, we exploited the experimental merits of the mouse to test the hypothesis that pathways constraining progression might be activated in indolent Pten-null mouse prostate tumours and that inactivation of such progression barriers in mice would engender a metastasis-prone condition. Comparative transcriptomic and canonical pathway analyses, followed by biochemical confirmation, of normal prostate epithelium versus poorly progressive Pten-null prostate cancers revealed robust activation of the TGFbeta/BMP-SMAD4 signalling axis. The functional relevance of SMAD4 was further supported by emergence of invasive, metastatic and lethal prostate cancers with 100% penetrance upon genetic deletion of Smad4 in the Pten-null mouse prostate. Pathological and molecular analysis as well as transcriptomic knowledge-based pathway profiling of emerging tumours identified cell proliferation and invasion as two cardinal tumour biological features in the metastatic Smad4/Pten-null PCA model. Follow-on pathological and functional assessment confirmed cyclin D1 and SPP1 as key mediators of these biological processes, which together with PTEN and SMAD4, form a four-gene signature that is prognostic of prostate-specific antigen (PSA) biochemical recurrence and lethal metastasis in human PCA. This model-informed progression analysis, together with genetic, functional and translational studies, establishes SMAD4 as a key regulator of PCA progression in mice and humans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3753179/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3753179/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ding, Zhihu -- Wu, Chang-Jiun -- Chu, Gerald C -- Xiao, Yonghong -- Ho, Dennis -- Zhang, Jingfang -- Perry, Samuel R -- Labrot, Emma S -- Wu, Xiaoqiu -- Lis, Rosina -- Hoshida, Yujin -- Hiller, David -- Hu, Baoli -- Jiang, Shan -- Zheng, Hongwu -- Stegh, Alexander H -- Scott, Kenneth L -- Signoretti, Sabina -- Bardeesy, Nabeel -- Wang, Y Alan -- Hill, David E -- Golub, Todd R -- Stampfer, Meir J -- Wong, Wing H -- Loda, Massimo -- Mucci, Lorelei -- Chin, Lynda -- DePinho, Ronald A -- P50 CA090381/CA/NCI NIH HHS/ -- P50 CA090381-08/CA/NCI NIH HHS/ -- P50 CA90381/CA/NCI NIH HHS/ -- R01 5R01CA136578/CA/NCI NIH HHS/ -- R01 CA131945/CA/NCI NIH HHS/ -- R01CA131945/CA/NCI NIH HHS/ -- R01CA141298/CA/NCI NIH HHS/ -- U01-CA84313/CA/NCI NIH HHS/ -- England -- Nature. 2011 Feb 10;470(7333):269-73. doi: 10.1038/nature09677. Epub 2011 Feb 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21289624" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone Morphogenetic Proteins/metabolism ; Cell Proliferation ; Cyclin D1/genetics/metabolism ; *Disease Progression ; Gene Expression Profiling ; Gene Expression Regulation, Neoplastic ; Genes, Tumor Suppressor/physiology ; Humans ; Lung Neoplasms/secondary ; Lymphatic Metastasis ; Male ; Mice ; Mice, Transgenic ; Models, Biological ; Neoplasm Invasiveness/genetics/pathology ; Neoplasm Metastasis/genetics/*pathology ; Osteopontin/genetics/metabolism ; PTEN Phosphohydrolase/deficiency/genetics ; Penetrance ; Prognosis ; Prostate/metabolism ; Prostate-Specific Antigen/metabolism ; Prostatic Neoplasms/diagnosis/genetics/*pathology ; Smad4 Protein/deficiency/genetics/*metabolism ; Transforming Growth Factor beta
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-10-02
    Description: Haploids and double haploids are important resources for studying recessive traits and have large impacts on crop breeding, but natural haploids are rare in animals. Mammalian haploids are restricted to germline cells and are occasionally found in tumours with massive chromosome loss. Recent success in establishing haploid embryonic stem (ES) cells in medaka fish and mice raised the possibility of using engineered mammalian haploid cells in genetic studies. However, the availability and functional characterization of mammalian haploid ES cells are still limited. Here we show that mouse androgenetic haploid ES (ahES) cell lines can be established by transferring sperm into an enucleated oocyte. The ahES cells maintain haploidy and stable growth over 30 passages, express pluripotent markers, possess the ability to differentiate into all three germ layers in vitro and in vivo, and contribute to germlines of chimaeras when injected into blastocysts. Although epigenetically distinct from sperm cells, the ahES cells can produce viable and fertile progenies after intracytoplasmic injection into mature oocytes. The oocyte-injection procedure can also produce viable transgenic mice from genetically engineered ahES cells. Our findings show the developmental pluripotency of androgenentic haploids and provide a new tool to quickly produce genetic models for recessive traits. They may also shed new light on assisted reproduction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Wei -- Shuai, Ling -- Wan, Haifeng -- Dong, Mingzhu -- Wang, Meng -- Sang, Lisi -- Feng, Chunjing -- Luo, Guan-Zheng -- Li, Tianda -- Li, Xin -- Wang, Libin -- Zheng, Qin-Yuan -- Sheng, Chao -- Wu, Hua-Jun -- Liu, Zhonghua -- Liu, Lei -- Wang, Liu -- Wang, Xiu-Jie -- Zhao, Xiao-Yang -- Zhou, Qi -- England -- Nature. 2012 Oct 18;490(7420):407-11. doi: 10.1038/nature11435. Epub 2012 Sep 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23023130" target="_blank"〉PubMed〈/a〉
    Keywords: Androgens/*metabolism ; Animals ; Biomarkers/metabolism ; Blastocyst/cytology ; Cell Line ; Cell Nucleus ; Chimera/embryology/genetics ; Embryonic Stem Cells/cytology/*physiology ; Epigenesis, Genetic ; Female ; *Haploidy ; Male ; Mice ; Mice, Transgenic/embryology/genetics/*growth & development ; Models, Animal ; Models, Genetic ; Oocytes/cytology/growth & development/metabolism ; Pluripotent Stem Cells/cytology/physiology ; Sperm Injections, Intracytoplasmic ; Spermatozoa/metabolism/transplantation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-03-05
    Description: Characterization of how the microenvironment, or niche, regulates stem cell activity is central to understanding stem cell biology and to developing strategies for the therapeutic manipulation of stem cells. Low oxygen tension (hypoxia) is commonly thought to be a shared niche characteristic in maintaining quiescence in multiple stem cell types. However, support for the existence of a hypoxic niche has largely come from indirect evidence such as proteomic analysis, expression of hypoxia inducible factor-1alpha (Hif-1alpha) and related genes, and staining with surrogate hypoxic markers (for example, pimonidazole). Here we perform direct in vivo measurements of local oxygen tension (pO2) in the bone marrow of live mice. Using two-photon phosphorescence lifetime microscopy, we determined the absolute pO2 of the bone marrow to be quite low (〈32 mm Hg) despite very high vascular density. We further uncovered heterogeneities in local pO2, with the lowest pO2 ( approximately 9.9 mm Hg, or 1.3%) found in deeper peri-sinusoidal regions. The endosteal region, by contrast, is less hypoxic as it is perfused with small arteries that are often positive for the marker nestin. These pO2 values change markedly after radiation and chemotherapy, pointing to the role of stress in altering the stem cell metabolic microenvironment.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3984353/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3984353/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Spencer, Joel A -- Ferraro, Francesca -- Roussakis, Emmanuel -- Klein, Alyssa -- Wu, Juwell -- Runnels, Judith M -- Zaher, Walid -- Mortensen, Luke J -- Alt, Clemens -- Turcotte, Raphael -- Yusuf, Rushdia -- Cote, Daniel -- Vinogradov, Sergei A -- Scadden, David T -- Lin, Charles P -- EB017274/EB/NIBIB NIH HHS/ -- HL096372/HL/NHLBI NIH HHS/ -- HL097748/HL/NHLBI NIH HHS/ -- HL097794/HL/NHLBI NIH HHS/ -- R01 EB014703/EB/NIBIB NIH HHS/ -- R01 EB017274/EB/NIBIB NIH HHS/ -- R01 HL097748/HL/NHLBI NIH HHS/ -- R01 HL097794/HL/NHLBI NIH HHS/ -- R03 HL096372/HL/NHLBI NIH HHS/ -- U01 HL100402/HL/NHLBI NIH HHS/ -- England -- Nature. 2014 Apr 10;508(7495):269-73. doi: 10.1038/nature13034. Epub 2014 Mar 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA [2] Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA [3] Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA. ; 1] Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA [2] Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA [3] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA. ; 1] Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA [2] Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; 1] Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA [2] Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA. ; 1] Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA [2] Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA [3] Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia. ; 1] Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA [2] Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA [3] Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA. ; Departement de Physique, Genie Physique et Optique and Centre de Recherche de l'Institut Universitaire en Sante Mentale de Quebec, Universite Laval, Quebec City, Quebec G1J 2G3, Canada. ; Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; 1] Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA [2] Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA [3] Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24590072" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anoxia/diagnosis/metabolism ; Arteries/metabolism ; Bone Marrow/blood supply/drug effects/*metabolism/radiation effects ; Busulfan/pharmacology ; Cell Hypoxia ; Hematopoietic Stem Cells/cytology/metabolism ; Luminescent Measurements ; Male ; Mice ; Mice, Inbred C57BL ; Microscopy ; Nestin/metabolism ; Oxygen/*analysis/metabolism ; Photons ; Stem Cell Niche/drug effects/radiation effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2010-11-06
    Description: The neuroanatomical architecture is considered to be the basis for understanding brain function and dysfunction. However, existing imaging tools have limitations for brainwide mapping of neural circuits at a mesoscale level. We developed a micro-optical sectioning tomography (MOST) system that can provide micrometer-scale tomography of a centimeter-sized whole mouse brain. Using MOST, we obtained a three-dimensional structural data set of a Golgi-stained whole mouse brain at the neurite level. The morphology and spatial locations of neurons and traces of neurites could be clearly distinguished. We found that neighboring Purkinje cells stick to each other.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Anan -- Gong, Hui -- Zhang, Bin -- Wang, Qingdi -- Yan, Cheng -- Wu, Jingpeng -- Liu, Qian -- Zeng, Shaoqun -- Luo, Qingming -- New York, N.Y. -- Science. 2010 Dec 3;330(6009):1404-8. doi: 10.1126/science.1191776. Epub 2010 Nov 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, P. R. China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21051596" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/*anatomy & histology/*cytology ; Brain Mapping/*methods ; Image Processing, Computer-Assisted ; *Imaging, Three-Dimensional ; Male ; Mice ; Microscopy ; *Microtomy ; Neural Pathways ; Neurites/ultrastructure ; Neurons/*cytology ; *Tomography, Optical
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-09-12
    Description: Monoclonal antibodies directed against cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), such as ipilimumab, yield considerable clinical benefit for patients with metastatic melanoma by inhibiting immune checkpoint activity, but clinical predictors of response to these therapies remain incompletely characterized. To investigate the roles of tumor-specific neoantigens and alterations in the tumor microenvironment in the response to ipilimumab, we analyzed whole exomes from pretreatment melanoma tumor biopsies and matching germline tissue samples from 110 patients. For 40 of these patients, we also obtained and analyzed transcriptome data from the pretreatment tumor samples. Overall mutational load, neoantigen load, and expression of cytolytic markers in the immune microenvironment were significantly associated with clinical benefit. However, no recurrent neoantigen peptide sequences predicted responder patient populations. Thus, detailed integrated molecular characterization of large patient cohorts may be needed to identify robust determinants of response and resistance to immune checkpoint inhibitors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Van Allen, Eliezer M -- Miao, Diana -- Schilling, Bastian -- Shukla, Sachet A -- Blank, Christian -- Zimmer, Lisa -- Sucker, Antje -- Hillen, Uwe -- Foppen, Marnix H Geukes -- Goldinger, Simone M -- Utikal, Jochen -- Hassel, Jessica C -- Weide, Benjamin -- Kaehler, Katharina C -- Loquai, Carmen -- Mohr, Peter -- Gutzmer, Ralf -- Dummer, Reinhard -- Gabriel, Stacey -- Wu, Catherine J -- Schadendorf, Dirk -- Garraway, Levi A -- U54 HG003067/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2015 Oct 9;350(6257):207-11. doi: 10.1126/science.aad0095. Epub 2015 Sep 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA 02215, USA. ; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. ; Department of Dermatology, University Hospital, University Duisburg-Essen, 45147 Essen, Germany. German Cancer Consortium(DKTK), 69121 Heidelberg, Germany. ; Department of Medical Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands. ; Department of Dermatology, University Hospital Zurich, 8091 Zurich, Switzerland. ; Skin Cancer Unit, German Cancer Research Center(DKTK), 69121 Heidelberg, Germany. Skin Cancer Unit, German Cancer Research Center(DKTK), 69121 Heidelberg, Germany. Department of Dermatology, Venerology, and Allergology, University Medical Center, Ruprecht-Karls University of Heidelberg, 68167 Mannheim, Germany. ; Department of Dermatology, University Hospital, Ruprecht-Karls University of Heidelberg, 69120 Heidelberg, Germany. ; Department of Dermatology, University Hospital Tubingen, 72076 Tubingen, Germany. ; Department of Dermatology, University Hospital Kiel, 24105 Kiel, Germany. ; Department of Dermatology, University Medical Center, 55131 Mainz, Germany. ; Department of Dermatology, Elbe-Kliniken, 21614 Buxtehude, Germany. ; Department of Dermatology and Allergy, Skin Cancer Center Hannover, Hannover Medical School, 30625 Hannover, Germany. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. ; Department of Dermatology, University Hospital, University Duisburg-Essen, 45147 Essen, Germany. German Cancer Consortium(DKTK), 69121 Heidelberg, Germany. levi_garraway@dfci.harvard.edu dirk.schadendorf@uk-essen.de. ; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA 02215, USA. levi_garraway@dfci.harvard.edu dirk.schadendorf@uk-essen.de.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26359337" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Aged ; Aged, 80 and over ; Antibodies, Monoclonal/*pharmacology/therapeutic use ; Antigens, Neoplasm/*genetics ; *Biomarkers, Pharmacological ; CTLA-4 Antigen/*antagonists & inhibitors ; Cell Cycle Checkpoints/genetics/immunology ; Cohort Studies ; DNA Mutational Analysis ; Drug Resistance, Neoplasm/genetics ; Exome ; Female ; Genomics ; HLA Antigens/genetics ; Humans ; Male ; Melanoma/*drug therapy/*genetics/secondary ; Middle Aged ; Mutation ; Skin Neoplasms/*drug therapy/*genetics/pathology ; Tumor Microenvironment/drug effects/immunology ; Young Adult
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...