ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-01-07
    Description: Performing genetic studies in multiple human populations can identify disease risk alleles that are common in one population but rare in others, with the potential to illuminate pathophysiology, health disparities, and the population genetic origins of disease alleles. Here we analysed 9.2 million single nucleotide polymorphisms (SNPs) in each of 8,214 Mexicans and other Latin Americans: 3,848 with type 2 diabetes and 4,366 non-diabetic controls. In addition to replicating previous findings, we identified a novel locus associated with type 2 diabetes at genome-wide significance spanning the solute carriers SLC16A11 and SLC16A13 (P = 3.9 x 10(-13); odds ratio (OR) = 1.29). The association was stronger in younger, leaner people with type 2 diabetes, and replicated in independent samples (P = 1.1 x 10(-4); OR = 1.20). The risk haplotype carries four amino acid substitutions, all in SLC16A11; it is present at ~50% frequency in Native American samples and ~10% in east Asian, but is rare in European and African samples. Analysis of an archaic genome sequence indicated that the risk haplotype introgressed into modern humans via admixture with Neanderthals. The SLC16A11 messenger RNA is expressed in liver, and V5-tagged SLC16A11 protein localizes to the endoplasmic reticulum. Expression of SLC16A11 in heterologous cells alters lipid metabolism, most notably causing an increase in intracellular triacylglycerol levels. Despite type 2 diabetes having been well studied by genome-wide association studies in other populations, analysis in Mexican and Latin American individuals identified SLC16A11 as a novel candidate gene for type 2 diabetes with a possible role in triacylglycerol metabolism.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4127086/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4127086/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉SIGMA Type 2 Diabetes Consortium -- Williams, Amy L -- Jacobs, Suzanne B R -- Moreno-Macias, Hortensia -- Huerta-Chagoya, Alicia -- Churchhouse, Claire -- Marquez-Luna, Carla -- Garcia-Ortiz, Humberto -- Gomez-Vazquez, Maria Jose -- Burtt, Noel P -- Aguilar-Salinas, Carlos A -- Gonzalez-Villalpando, Clicerio -- Florez, Jose C -- Orozco, Lorena -- Haiman, Christopher A -- Tusie-Luna, Teresa -- Altshuler, David -- F32 HG005944/HG/NHGRI NIH HHS/ -- P01 HL045522/HL/NHLBI NIH HHS/ -- P30 AG038072/AG/NIA NIH HHS/ -- R01 CA144034/CA/NCI NIH HHS/ -- R01 CA55069/CA/NCI NIH HHS/ -- R01 CA80205/CA/NCI NIH HHS/ -- R01 DK042273/DK/NIDDK NIH HHS/ -- R01 DK047482/DK/NIDDK NIH HHS/ -- R01 DK057295/DK/NIDDK NIH HHS/ -- R01 HG006399/HG/NHGRI NIH HHS/ -- R01DK053889/DK/NIDDK NIH HHS/ -- R01HL24799/HL/NHLBI NIH HHS/ -- R35 CA53890/CA/NCI NIH HHS/ -- U01DK085526/DK/NIDDK NIH HHS/ -- England -- Nature. 2014 Feb 6;506(7486):97-101. doi: 10.1038/nature12828. Epub 2013 Dec 25.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24390345" target="_blank"〉PubMed〈/a〉
    Keywords: African Continental Ancestry Group/genetics ; Alleles ; Animals ; Asian Continental Ancestry Group/genetics ; Cohort Studies ; Diabetes Mellitus, Type 2/*genetics ; Endoplasmic Reticulum/genetics ; European Continental Ancestry Group/genetics ; Female ; Genetic Predisposition to Disease/*genetics ; Genome-Wide Association Study ; Haplotypes/genetics ; HeLa Cells ; Humans ; Indians, North American/genetics ; Lipid Metabolism/genetics ; Liver/cytology/metabolism ; Male ; Mexico ; Monocarboxylic Acid Transporters/*genetics ; Neanderthals/genetics ; Polymorphism, Single Nucleotide/*genetics ; RNA, Messenger/genetics/metabolism ; Triglycerides/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-03-05
    Description: Observing marine mammal (MM) populations continuously in time and space over the immense ocean areas they inhabit is challenging but essential for gathering an unambiguous record of their distribution, as well as understanding their behaviour and interaction with prey species. Here we use passive ocean acoustic waveguide remote sensing (POAWRS) in an important North Atlantic feeding ground to instantaneously detect, localize and classify MM vocalizations from diverse species over an approximately 100,000 km(2) region. More than eight species of vocal MMs are found to spatially converge on fish spawning areas containing massive densely populated herring shoals at night-time and diffuse herring distributions during daytime. We find the vocal MMs divide the enormous fish prey field into species-specific foraging areas with varying degrees of spatial overlap, maintained for at least two weeks of the herring spawning period. The recorded vocalization rates are diel (24 h)-dependent for all MM species, with some significantly more vocal at night and others more vocal during the day. The four key baleen whale species of the region: fin, humpback, blue and minke have vocalization rate trends that are highly correlated to trends in fish shoaling density and to each other over the diel cycle. These results reveal the temporospatial dynamics of combined multi-species MM foraging activities in the vicinity of an extensive fish prey field that forms a massive ecological hotspot, and would be unattainable with conventional methodologies. Understanding MM behaviour and distributions is essential for management of marine ecosystems and for accessing anthropogenic impacts on these protected marine species.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Delin -- Garcia, Heriberto -- Huang, Wei -- Tran, Duong D -- Jain, Ankita D -- Yi, Dong Hoon -- Gong, Zheng -- Jech, J Michael -- Godo, Olav Rune -- Makris, Nicholas C -- Ratilal, Purnima -- England -- Nature. 2016 Mar 17;531(7594):366-70. doi: 10.1038/nature16960. Epub 2016 Mar 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Ocean Acoustics and Ecosystem Sensing, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, USA. ; Laboratory for Undersea Remote Sensing, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA. ; Northeast Fisheries Science Center, 166 Water Street, Woods Hole, Massachusetts 02543, USA. ; Institute of Marine Research, Post Office Box 1870, Nordnes, N-5817 Bergen, Norway.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26934221" target="_blank"〉PubMed〈/a〉
    Keywords: Acoustics ; Animals ; Aquatic Organisms/*physiology ; Atlantic Ocean ; Diet/veterinary ; Ecosystem ; *Feeding Behavior ; Fishes/*physiology ; Male ; Mammals/*physiology ; *Predatory Behavior ; Time Factors ; *Vocalization, Animal ; Whales/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...