ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-02-08
    Description: Haematopoietic stem cells (HSCs) circulate in the bloodstream under steady-state conditions, but the mechanisms controlling their physiological trafficking are unknown. Here we show that circulating HSCs and their progenitors exhibit robust circadian fluctuations, peaking 5 h after the initiation of light and reaching a nadir 5 h after darkness. Circadian oscillations are markedly altered when mice are subjected to continuous light or to a 'jet lag' (defined as a shift of 12 h). Circulating HSCs and their progenitors fluctuate in antiphase with the expression of the chemokine CXCL12 in the bone marrow microenvironment. The cyclical release of HSCs and expression of Cxcl12 are regulated by core genes of the molecular clock through circadian noradrenaline secretion by the sympathetic nervous system. These adrenergic signals are locally delivered by nerves in the bone marrow, transmitted to stromal cells by the beta(3)-adrenergic receptor, leading to a decreased nuclear content of Sp1 transcription factor and the rapid downregulation of Cxcl12. These data indicate that a circadian, neurally driven release of HSC during the animal's resting period may promote the regeneration of the stem cell niche and possibly other tissues.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mendez-Ferrer, Simon -- Lucas, Daniel -- Battista, Michela -- Frenette, Paul S -- England -- Nature. 2008 Mar 27;452(7186):442-7. doi: 10.1038/nature06685. Epub 2008 Feb 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Mount Sinai School of Medicine, Department of Medicine and Department of Gene and Cell Medicine, New York, New York 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18256599" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Clocks/genetics/physiology/radiation effects ; Bone Marrow/*innervation/metabolism/radiation effects ; Bone Marrow Cells/metabolism/radiation effects ; Cell Line ; Chemokine CXCL12/genetics/metabolism ; Circadian Rhythm/*physiology/radiation effects ; Cues ; Gene Expression Regulation ; Hematopoietic Stem Cells/*cytology/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Osteoblasts ; Photic Stimulation ; Receptors, Adrenergic, beta-3/deficiency/genetics/metabolism ; Sp1 Transcription Factor/metabolism ; Stromal Cells/metabolism ; Sympathetic Nervous System/metabolism/radiation effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-08-11
    Description: The typical response of the adult mammalian pulmonary circulation to a low oxygen environment is vasoconstriction and structural remodelling of pulmonary arterioles, leading to chronic elevation of pulmonary artery pressure (pulmonary hypertension) and right ventricular hypertrophy. Some mammals, however, exhibit genetic resistance to hypoxia-induced pulmonary hypertension. We used a congenic breeding program and comparative genomics to exploit this variation in the rat and identified the gene Slc39a12 as a major regulator of hypoxia-induced pulmonary vascular remodelling. Slc39a12 encodes the zinc transporter ZIP12. Here we report that ZIP12 expression is increased in many cell types, including endothelial, smooth muscle and interstitial cells, in the remodelled pulmonary arterioles of rats, cows and humans susceptible to hypoxia-induced pulmonary hypertension. We show that ZIP12 expression in pulmonary vascular smooth muscle cells is hypoxia dependent and that targeted inhibition of ZIP12 inhibits the rise in intracellular labile zinc in hypoxia-exposed pulmonary vascular smooth muscle cells and their proliferation in culture. We demonstrate that genetic disruption of ZIP12 expression attenuates the development of pulmonary hypertension in rats housed in a hypoxic atmosphere. This new and unexpected insight into the fundamental role of a zinc transporter in mammalian pulmonary vascular homeostasis suggests a new drug target for the pharmacological management of pulmonary hypertension.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhao, Lan -- Oliver, Eduardo -- Maratou, Klio -- Atanur, Santosh S -- Dubois, Olivier D -- Cotroneo, Emanuele -- Chen, Chien-Nien -- Wang, Lei -- Arce, Cristina -- Chabosseau, Pauline L -- Ponsa-Cobas, Joan -- Frid, Maria G -- Moyon, Benjamin -- Webster, Zoe -- Aldashev, Almaz -- Ferrer, Jorge -- Rutter, Guy A -- Stenmark, Kurt R -- Aitman, Timothy J -- Wilkins, Martin R -- 098424/Wellcome Trust/United Kingdom -- 101033/Wellcome Trust/United Kingdom -- MR/J0003042/1/Medical Research Council/United Kingdom -- P01 HL014985/HL/NHLBI NIH HHS/ -- PG/04/035/16912/British Heart Foundation/United Kingdom -- PG/10/59/28478/British Heart Foundation/United Kingdom -- PG/12/61/29818/British Heart Foundation/United Kingdom -- PG/2000137/British Heart Foundation/United Kingdom -- PG/95170/British Heart Foundation/United Kingdom -- PG/98018/British Heart Foundation/United Kingdom -- RG/10/16/28575/British Heart Foundation/United Kingdom -- WT098424AIA/Wellcome Trust/United Kingdom -- England -- Nature. 2015 Aug 20;524(7565):356-60. doi: 10.1038/nature14620. Epub 2015 Aug 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Pharmacology and Therapeutics, Division of Experimental Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK. ; Physiological Genomics and Medicine Group, Medical Research Council Clinical Sciences Centre, Hammersmith Hospital, London W12 0NN, UK. ; Section of Epigenomics and Disease, Department of Medicine, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK. ; Department of Pediatrics and Medicine, Division of Critical Care Medicine and Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver, Denver, Colorado 80045, USA. ; Transgenics and Embryonic Stem Cell Laboratory, Medical Research Council Clinical Sciences Centre, Hammersmith Hospital, London W12 0NN, UK. ; Institute of Molecular Biology and Medicine, 3 Togolok Moldo Street, Bishkek 720040, Kyrgyzstan. ; Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, Hammersmith Hospital, London W12 0NN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26258299" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Congenic ; Anoxia/genetics/*metabolism ; Arterioles/metabolism ; Cation Transport Proteins/deficiency/genetics/*metabolism ; Cattle ; Cell Hypoxia ; Cell Proliferation ; Cells, Cultured ; Chromosomes, Mammalian/genetics ; Chronic Disease ; Female ; Gene Knockdown Techniques ; Homeostasis ; Humans ; Hypertension, Pulmonary/genetics/*metabolism ; Intracellular Space/metabolism ; Male ; Muscle, Smooth, Vascular/cytology/*metabolism ; Rats ; Rats, Inbred F344 ; Rats, Inbred WKY ; Zinc/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-09-17
    Description: Neural circuits regulate cytokine production to prevent potentially damaging inflammation. A prototypical vagus nerve circuit, the inflammatory reflex, inhibits tumor necrosis factor-alpha production in spleen by a mechanism requiring acetylcholine signaling through the alpha7 nicotinic acetylcholine receptor expressed on cytokine-producing macrophages. Nerve fibers in spleen lack the enzymatic machinery necessary for acetylcholine production; therefore, how does this neural circuit terminate in cholinergic signaling? We identified an acetylcholine-producing, memory phenotype T cell population in mice that is integral to the inflammatory reflex. These acetylcholine-producing T cells are required for inhibition of cytokine production by vagus nerve stimulation. Thus, action potentials originating in the vagus nerve regulate T cells, which in turn produce the neurotransmitter, acetylcholine, required to control innate immune responses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4548937/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4548937/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rosas-Ballina, Mauricio -- Olofsson, Peder S -- Ochani, Mahendar -- Valdes-Ferrer, Sergio I -- Levine, Yaakov A -- Reardon, Colin -- Tusche, Michael W -- Pavlov, Valentin A -- Andersson, Ulf -- Chavan, Sangeeta -- Mak, Tak W -- Tracey, Kevin J -- R01 GM057226/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Oct 7;334(6052):98-101. doi: 10.1126/science.1209985. Epub 2011 Sep 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, New York 11030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21921156" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylcholine/*biosynthesis ; Action Potentials ; Animals ; CD4-Positive T-Lymphocytes/*immunology/*metabolism ; Choline O-Acetyltransferase/metabolism ; Cholinergic Agents/metabolism ; Female ; *Immunity, Innate ; Immunologic Memory ; Inflammation ; Lymphocyte Activation ; Male ; Mice ; Mice, Inbred BALB C ; Mice, Nude ; *Neuroimmunomodulation ; Norepinephrine/pharmacology ; Receptors, Nicotinic/metabolism ; Signal Transduction ; Spleen/immunology/innervation/metabolism ; T-Lymphocyte Subsets/immunology/metabolism ; Tumor Necrosis Factor-alpha/blood ; Vagus Nerve/*physiology ; Vagus Nerve Stimulation ; alpha7 Nicotinic Acetylcholine Receptor
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-05-28
    Description: With data from 33 nations, we illustrate the differences between cultures that are tight (have many strong norms and a low tolerance of deviant behavior) versus loose (have weak social norms and a high tolerance of deviant behavior). Tightness-looseness is part of a complex, loosely integrated multilevel system that comprises distal ecological and historical threats (e.g., high population density, resource scarcity, a history of territorial conflict, and disease and environmental threats), broad versus narrow socialization in societal institutions (e.g., autocracy, media regulations), the strength of everyday recurring situations, and micro-level psychological affordances (e.g., prevention self-guides, high regulatory strength, need for structure). This research advances knowledge that can foster cross-cultural understanding in a world of increasing global interdependence and has implications for modeling cultural change.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gelfand, Michele J -- Raver, Jana L -- Nishii, Lisa -- Leslie, Lisa M -- Lun, Janetta -- Lim, Beng Chong -- Duan, Lili -- Almaliach, Assaf -- Ang, Soon -- Arnadottir, Jakobina -- Aycan, Zeynep -- Boehnke, Klaus -- Boski, Pawel -- Cabecinhas, Rosa -- Chan, Darius -- Chhokar, Jagdeep -- D'Amato, Alessia -- Ferrer, Montse -- Fischlmayr, Iris C -- Fischer, Ronald -- Fulop, Marta -- Georgas, James -- Kashima, Emiko S -- Kashima, Yoshishima -- Kim, Kibum -- Lempereur, Alain -- Marquez, Patricia -- Othman, Rozhan -- Overlaet, Bert -- Panagiotopoulou, Penny -- Peltzer, Karl -- Perez-Florizno, Lorena R -- Ponomarenko, Larisa -- Realo, Anu -- Schei, Vidar -- Schmitt, Manfred -- Smith, Peter B -- Soomro, Nazar -- Szabo, Erna -- Taveesin, Nalinee -- Toyama, Midori -- Van de Vliert, Evert -- Vohra, Naharika -- Ward, Colleen -- Yamaguchi, Susumu -- New York, N.Y. -- Science. 2011 May 27;332(6033):1100-4. doi: 10.1126/science.1197754.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychology, University of Maryland, College Park, MD 20742, USA. mgelfand@psyc.umd.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21617077" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; *Behavior ; *Cross-Cultural Comparison ; *Cultural Characteristics ; Female ; Government ; Humans ; Male ; Permissiveness ; Political Systems ; Population Density ; *Social Behavior ; *Social Conformity ; Social Control, Formal ; *Social Values ; Young Adult
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-07-18
    Description: The inflammasome regulates the release of caspase activation-dependent cytokines, including interleukin (IL)-1beta, IL-18 and high-mobility group box 1 (HMGB1). By studying HMGB1 release mechanisms, here we identify a role for double-stranded RNA-dependent protein kinase (PKR, also known as EIF2AK2) in inflammasome activation. Exposure of macrophages to inflammasome agonists induced PKR autophosphorylation. PKR inactivation by genetic deletion or pharmacological inhibition severely impaired inflammasome activation in response to double-stranded RNA, ATP, monosodium urate, adjuvant aluminium, rotenone, live Escherichia coli, anthrax lethal toxin, DNA transfection and Salmonella typhimurium infection. PKR deficiency significantly inhibited the secretion of IL-1beta, IL-18 and HMGB1 in E. coli-induced peritonitis. PKR physically interacts with several inflammasome components, including NOD-like receptor (NLR) family pyrin domain-containing 3 (NLRP3), NLRP1, NLR family CARD domain-containing protein 4 (NLRC4), absent in melanoma 2 (AIM2), and broadly regulates inflammasome activation. PKR autophosphorylation in a cell-free system with recombinant NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC, also known as PYCARD) and pro-caspase-1 reconstitutes inflammasome activity. These results show a crucial role for PKR in inflammasome activation, and indicate that it should be possible to pharmacologically target this molecule to treat inflammation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4163918/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4163918/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lu, Ben -- Nakamura, Takahisa -- Inouye, Karen -- Li, Jianhua -- Tang, Yiting -- Lundback, Peter -- Valdes-Ferrer, Sergio I -- Olofsson, Peder S -- Kalb, Thomas -- Roth, Jesse -- Zou, Yongrui -- Erlandsson-Harris, Helena -- Yang, Huan -- Ting, Jenny P-Y -- Wang, Haichao -- Andersson, Ulf -- Antoine, Daniel J -- Chavan, Sangeeta S -- Hotamisligil, Gokhan S -- Tracey, Kevin J -- DK052539/DK/NIDDK NIH HHS/ -- G0700654/Medical Research Council/United Kingdom -- R01 DK052539/DK/NIDDK NIH HHS/ -- R01 GM057226/GM/NIGMS NIH HHS/ -- R01 GM062508/GM/NIGMS NIH HHS/ -- R01 GM62508/GM/NIGMS NIH HHS/ -- England -- Nature. 2012 Aug 30;488(7413):670-4. doi: 10.1038/nature11290.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, New York 11030, USA. blu@nshs.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22801494" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/metabolism ; Adenosine Triphosphate/pharmacology ; Animals ; Antigens, Bacterial/pharmacology ; Apoptosis Regulatory Proteins/metabolism ; Bacterial Toxins/pharmacology ; CARD Signaling Adaptor Proteins/metabolism ; Calcium-Binding Proteins/metabolism ; Carrier Proteins/metabolism ; Cell Line ; Cells, Cultured ; Crystallins/metabolism ; Escherichia coli/immunology/physiology ; Escherichia coli Infections/immunology/metabolism ; Female ; HMGB1 Protein/blood/*secretion ; Humans ; Inflammasomes/agonists/*metabolism ; Interleukin-18/blood ; Interleukin-1beta/blood ; Interleukin-6/analysis/blood ; Macrophages, Peritoneal/drug effects/metabolism ; Male ; Membrane Proteins/metabolism ; Mice ; Mice, Inbred C57BL ; Peritonitis/metabolism ; Phosphorylation ; RNA, Double-Stranded/immunology/pharmacology ; Rotenone/pharmacology ; Salmonella Infections/immunology/metabolism ; Salmonella typhimurium/immunology/physiology ; Transfection ; Uric Acid/pharmacology ; eIF-2 Kinase/antagonists & inhibitors/deficiency/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-10-16
    Description: Most of the mammalian genome is transcribed. This generates a vast repertoire of transcripts that includes protein-coding messenger RNAs, long non-coding RNAs (lncRNAs) and repetitive sequences, such as SINEs (short interspersed nuclear elements). A large percentage of ncRNAs are nuclear-enriched with unknown function. Antisense lncRNAs may form sense-antisense pairs by pairing with a protein-coding gene on the opposite strand to regulate epigenetic silencing, transcription and mRNA stability. Here we identify a nuclear-enriched lncRNA antisense to mouse ubiquitin carboxy-terminal hydrolase L1 (Uchl1), a gene involved in brain function and neurodegenerative diseases. Antisense Uchl1 increases UCHL1 protein synthesis at a post-transcriptional level, hereby identifying a new functional class of lncRNAs. Antisense Uchl1 activity depends on the presence of a 5' overlapping sequence and an embedded inverted SINEB2 element. These features are shared by other natural antisense transcripts and can confer regulatory activity to an artificial antisense to green fluorescent protein. Antisense Uchl1 function is under the control of stress signalling pathways, as mTORC1 inhibition by rapamycin causes an increase in UCHL1 protein that is associated to the shuttling of antisense Uchl1 RNA from the nucleus to the cytoplasm. Antisense Uchl1 RNA is then required for the association of the overlapping sense protein-coding mRNA to active polysomes for translation. These data reveal another layer of gene expression control at the post-transcriptional level.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carrieri, Claudia -- Cimatti, Laura -- Biagioli, Marta -- Beugnet, Anne -- Zucchelli, Silvia -- Fedele, Stefania -- Pesce, Elisa -- Ferrer, Isidre -- Collavin, Licio -- Santoro, Claudio -- Forrest, Alistair R R -- Carninci, Piero -- Biffo, Stefano -- Stupka, Elia -- Gustincich, Stefano -- England -- Nature. 2012 Nov 15;491(7424):454-7. doi: 10.1038/nature11508. Epub 2012 Oct 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Area of Neuroscience, International School for Advanced Studies (SISSA), via Bonomea 265, 34136 Trieste, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23064229" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Bacterial Agents/pharmacology ; Cell Line ; Humans ; Male ; Mice ; Protein Biosynthesis/drug effects/*genetics ; RNA, Antisense/genetics/*metabolism ; Sequence Inversion ; Short Interspersed Nucleotide Elements/*genetics ; Sirolimus/pharmacology ; Ubiquitin Thiolesterase/*genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-06-19
    Description: There is an urgent need for new drugs to treat malaria, with broad therapeutic potential and novel modes of action, to widen the scope of treatment and to overcome emerging drug resistance. Here we describe the discovery of DDD107498, a compound with a potent and novel spectrum of antimalarial activity against multiple life-cycle stages of the Plasmodium parasite, with good pharmacokinetic properties and an acceptable safety profile. DDD107498 demonstrates potential to address a variety of clinical needs, including single-dose treatment, transmission blocking and chemoprotection. DDD107498 was developed from a screening programme against blood-stage malaria parasites; its molecular target has been identified as translation elongation factor 2 (eEF2), which is responsible for the GTP-dependent translocation of the ribosome along messenger RNA, and is essential for protein synthesis. This discovery of eEF2 as a viable antimalarial drug target opens up new possibilities for drug discovery.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4700930/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4700930/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baragana, Beatriz -- Hallyburton, Irene -- Lee, Marcus C S -- Norcross, Neil R -- Grimaldi, Raffaella -- Otto, Thomas D -- Proto, William R -- Blagborough, Andrew M -- Meister, Stephan -- Wirjanata, Grennady -- Ruecker, Andrea -- Upton, Leanna M -- Abraham, Tara S -- Almeida, Mariana J -- Pradhan, Anupam -- Porzelle, Achim -- Martinez, Maria Santos -- Bolscher, Judith M -- Woodland, Andrew -- Norval, Suzanne -- Zuccotto, Fabio -- Thomas, John -- Simeons, Frederick -- Stojanovski, Laste -- Osuna-Cabello, Maria -- Brock, Paddy M -- Churcher, Tom S -- Sala, Katarzyna A -- Zakutansky, Sara E -- Jimenez-Diaz, Maria Belen -- Sanz, Laura Maria -- Riley, Jennifer -- Basak, Rajshekhar -- Campbell, Michael -- Avery, Vicky M -- Sauerwein, Robert W -- Dechering, Koen J -- Noviyanti, Rintis -- Campo, Brice -- Frearson, Julie A -- Angulo-Barturen, Inigo -- Ferrer-Bazaga, Santiago -- Gamo, Francisco Javier -- Wyatt, Paul G -- Leroy, Didier -- Siegl, Peter -- Delves, Michael J -- Kyle, Dennis E -- Wittlin, Sergio -- Marfurt, Jutta -- Price, Ric N -- Sinden, Robert E -- Winzeler, Elizabeth A -- Charman, Susan A -- Bebrevska, Lidiya -- Gray, David W -- Campbell, Simon -- Fairlamb, Alan H -- Willis, Paul A -- Rayner, Julian C -- Fidock, David A -- Read, Kevin D -- Gilbert, Ian H -- 079838/Wellcome Trust/United Kingdom -- 091625/Wellcome Trust/United Kingdom -- 098051/Wellcome Trust/United Kingdom -- 100476/Wellcome Trust/United Kingdom -- R01 AI090141/AI/NIAID NIH HHS/ -- R01 AI103058/AI/NIAID NIH HHS/ -- England -- Nature. 2015 Jun 18;522(7556):315-20. doi: 10.1038/nature14451.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK. ; Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA. ; Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK. ; Department of Life Sciences, Imperial College, London SW7 2AZ, UK. ; University of California, San Diego, School of Medicine, 9500 Gilman Drive 0760, La Jolla, California 92093, USA. ; Global Health and Tropical Medicine Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, Darwin, Northern Territory 0811, Australia. ; Department of Global Health, College of Public Health University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, Florida 33612, USA. ; GlaxoSmithKline, Tres Cantos Medicines Development Campus-Diseases of the Developing World, Severo Ochoa 2, Tres Cantos 28760, Madrid, Spain. ; TropIQ Health Sciences, Geert Grooteplein 28, Huispost 268, 6525 GA Nijmegen, The Netherlands. ; Centre for Drug Candidate Optimisation, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia. ; Eskitis Institute, Brisbane Innovation Park, Nathan Campus, Griffith University, Queensland 4111, Australia. ; Malaria Pathogenesis Laboratory, Eijkman Institute for Molecular Biology, Jalan Diponegoro 69, 10430 Jakarta, Indonesia. ; Medicines for Malaria Venture, PO Box 1826, 20 route de Pre-Bois, 1215 Geneva 15, Switzerland. ; Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland. ; 1] Global Health and Tropical Medicine Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, Darwin, Northern Territory 0811, Australia [2] Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LJ, UK. ; 1] Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA [2] Division of Infectious Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26085270" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antimalarials/administration & dosage/adverse ; effects/pharmacokinetics/*pharmacology ; Drug Discovery ; Female ; Gene Expression Regulation/*drug effects ; Life Cycle Stages/drug effects ; Liver/drug effects/parasitology ; Malaria/drug therapy/*parasitology ; Male ; Models, Molecular ; Peptide Elongation Factor 2/antagonists & inhibitors/metabolism ; Plasmodium/*drug effects/genetics/growth & development/*metabolism ; Plasmodium berghei/drug effects/physiology ; Plasmodium falciparum/drug effects/metabolism ; Plasmodium vivax/drug effects/metabolism ; Protein Biosynthesis/*drug effects ; Quinolines/administration & dosage/chemistry/pharmacokinetics/*pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-03-19
    Description: De Montjoye et al. (Reports, 30 January 2015, p. 536) claimed that most individuals can be reidentified from a deidentified transaction database and that anonymization mechanisms are not effective against reidentification. We demonstrate that anonymization can be performed by techniques well established in the literature.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sanchez, David -- Martinez, Sergio -- Domingo-Ferrer, Josep -- New York, N.Y. -- Science. 2016 Mar 18;351(6279):1274. doi: 10.1126/science.aad9295.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉United Nations Educational, Scientific, and Cultural Organization (UNESCO) Chair in Data Privacy, Department of Computer Engineering and Mathematics, Universitat Rovira i Virgili (URV), Avenue Paisos Catalans, 26, E-43007, Tarragona, Catalonia. david.sanchez@urv.cat. ; United Nations Educational, Scientific, and Cultural Organization (UNESCO) Chair in Data Privacy, Department of Computer Engineering and Mathematics, Universitat Rovira i Virgili (URV), Avenue Paisos Catalans, 26, E-43007, Tarragona, Catalonia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26989243" target="_blank"〉PubMed〈/a〉
    Keywords: *Commerce ; *Data Collection ; Female ; Humans ; *Information Dissemination ; Male ; *Privacy
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...