ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ELECTRONIC EQUIPMENT  (7)
  • Male  (2)
  • 1
    Publication Date: 2008-10-14
    Description: Human primordial germ cells and mouse neonatal and adult germline stem cells are pluripotent and show similar properties to embryonic stem cells. Here we report the successful establishment of human adult germline stem cells derived from spermatogonial cells of adult human testis. Cellular and molecular characterization of these cells revealed many similarities to human embryonic stem cells, and the germline stem cells produced teratomas after transplantation into immunodeficient mice. The human adult germline stem cells differentiated into various types of somatic cells of all three germ layers when grown under conditions used to induce the differentiation of human embryonic stem cells. We conclude that the generation of human adult germline stem cells from testicular biopsies may provide simple and non-controversial access to individual cell-based therapy without the ethical and immunological problems associated with human embryonic stem cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Conrad, Sabine -- Renninger, Markus -- Hennenlotter, Jorg -- Wiesner, Tina -- Just, Lothar -- Bonin, Michael -- Aicher, Wilhelm -- Buhring, Hans-Jorg -- Mattheus, Ulrich -- Mack, Andreas -- Wagner, Hans-Joachim -- Minger, Stephen -- Matzkies, Matthias -- Reppel, Michael -- Hescheler, Jurgen -- Sievert, Karl-Dietrich -- Stenzl, Arnulf -- Skutella, Thomas -- England -- Nature. 2008 Nov 20;456(7220):344-9. doi: 10.1038/nature07404. Epub 2008 Oct 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Anatomy, Department of Experimental Embryology, Tubingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18849962" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Animals ; Biomarkers/metabolism ; Cell Culture Techniques ; Cell Differentiation ; Cell Line ; Cell Lineage ; Cells, Cultured ; Embryonic Stem Cells/cytology/metabolism ; Epigenesis, Genetic ; Gene Expression Profiling ; Humans ; Male ; Mice ; Mice, Nude ; Neoplasm Transplantation ; Pluripotent Stem Cells/*cytology/metabolism ; Spermatogonia/cytology/ultrastructure ; Teratoma/pathology ; Testis/*cytology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-03-29
    Description: Circuits in the cerebral cortex consist of thousands of neurons connected by millions of synapses. A precise understanding of these local networks requires relating circuit activity with the underlying network structure. For pyramidal cells in superficial mouse visual cortex (V1), a consensus is emerging that neurons with similar visual response properties excite each other, but the anatomical basis of this recurrent synaptic network is unknown. Here we combined physiological imaging and large-scale electron microscopy to study an excitatory network in V1. We found that layer 2/3 neurons organized into subnetworks defined by anatomical connectivity, with more connections within than between groups. More specifically, we found that pyramidal neurons with similar orientation selectivity preferentially formed synapses with each other, despite the fact that axons and dendrites of all orientation selectivities pass near (〈5 mum) each other with roughly equal probability. Therefore, we predict that mechanisms of functionally specific connectivity take place at the length scale of spines. Neurons with similar orientation tuning formed larger synapses, potentially enhancing the net effect of synaptic specificity. With the ability to study thousands of connections in a single circuit, functional connectomics is proving a powerful method to uncover the organizational logic of cortical networks.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4844839/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4844839/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Wei-Chung Allen -- Bonin, Vincent -- Reed, Michael -- Graham, Brett J -- Hood, Greg -- Glattfelder, Katie -- Reid, R Clay -- P30 EY012196/EY/NEI NIH HHS/ -- P30 EY12196/EY/NEI NIH HHS/ -- P41 GM103712/GM/NIGMS NIH HHS/ -- P41 RR006009/RR/NCRR NIH HHS/ -- P41 RR06009/RR/NCRR NIH HHS/ -- R01 EY010115/EY/NEI NIH HHS/ -- R01 EY10115/EY/NEI NIH HHS/ -- R01 NS075436/NS/NINDS NIH HHS/ -- R21 NS085320/NS/NINDS NIH HHS/ -- England -- Nature. 2016 Apr 21;532(7599):370-4. doi: 10.1038/nature17192. Epub 2016 Mar 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Neuro-Electronics Research Flanders, a research initiative by imec, Vlaams Instituut voor Biotechnologie (VIB) and Katholieke Universiteit (KU) Leuven, 3001 Leuven, Belgium. ; Biomedical Applications Group, Pittsburgh Supercomputing Center, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA. ; Allen Institute for Brain Science, Seattle, Washington 98103, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27018655" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/physiology ; Calcium/analysis ; Dendrites/physiology ; Male ; Mice ; Mice, Inbred C57BL ; Photons ; Pyramidal Cells/cytology/physiology ; Synapses/metabolism ; Visual Cortex/*anatomy & histology/cytology/*physiology/ultrastructure ; Visual Pathways/anatomy & histology/*cytology/*physiology/ultrastructure
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-27
    Description: Photon-coupled isolation switch to provide transistor output electrically isolated from driving sources and all other switch terminals
    Keywords: ELECTRONIC EQUIPMENT
    Type: NASA-CR-80850 , TI-03-66-87
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-27
    Description: Optoelectronic techniques used to develop photon coupled integrated circuit switch
    Keywords: ELECTRONIC EQUIPMENT
    Type: NASA-CR-80820 , TI-03-66-134 , QR-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-27
    Description: Integrated circuit photon coupled isolation switch
    Keywords: ELECTRONIC EQUIPMENT
    Type: NASA-CR-84498 , TI-03-67-39
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-27
    Description: Design, development, and testing of new integrated circuit switch device
    Keywords: ELECTRONIC EQUIPMENT
    Type: NASA-CR-88506 , REPT.-03-67-74 , QR-5
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-27
    Description: Electro-optic techniques for developing miniature photon-coupled integrated circuit
    Keywords: ELECTRONIC EQUIPMENT
    Type: NASA-CR-73640 , REPT-03-68-78
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-27
    Description: Development of gallium arsenide laser diode with silicon phototransistor for optical isolation switch
    Keywords: ELECTRONIC EQUIPMENT
    Type: NASA-CR-93668 , TI-03-68-14 , QR-7
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-27
    Description: Integrated circuit isolation switch using photon coupling
    Keywords: ELECTRONIC EQUIPMENT
    Type: NASA-CR-81605 , QR-3 , REPT.-03-66-151
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...