ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2002-09-28
    Description: Molecular genetic studies of Drosophila melanogaster have led to profound advances in understanding the regulation of development. Here we report gene expression patterns for nearly one-third of all Drosophila genes during a complete time course of development. Mutations that eliminate eye or germline tissue were used to further analyze tissue-specific gene expression programs. These studies define major characteristics of the transcriptional programs that underlie the life cycle, compare development in males and females, and show that large-scale gene expression data collected from whole animals can be used to identify genes expressed in particular tissues and organs or genes involved in specific biological and biochemical processes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arbeitman, Michelle N -- Furlong, Eileen E M -- Imam, Farhad -- Johnson, Eric -- Null, Brian H -- Baker, Bruce S -- Krasnow, Mark A -- Scott, Matthew P -- Davis, Ronald W -- White, Kevin P -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2002 Sep 27;297(5590):2270-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12351791" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Animals ; Cluster Analysis ; Drosophila Proteins/genetics/physiology ; Drosophila melanogaster/embryology/*genetics/*growth & development ; Embryo, Nonmammalian/physiology ; Female ; *Gene Expression ; Gene Expression Profiling ; Gene Expression Regulation, Developmental ; *Genes, Insect ; Germ Cells/physiology ; Larva/genetics ; Life Cycle Stages/*genetics ; Male ; Oligonucleotide Array Sequence Analysis ; Organ Specificity ; Pupa/genetics ; RNA, Messenger/genetics/metabolism ; Sex Characteristics ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-11-25
    Description: An enduring controversy in neuroscience concerns how the brain "binds" together separately coded stimulus features to form unitary representations of objects. Recent evidence has indicated a close link between this binding process and 40-hertz (gamma-band) oscillations generated by localized neural circuits. In a separate line of research, the ability of young infants to perceive objects as unitary and bounded has become a central focus for debates about the mechanisms of perceptual development. Here we demonstrate that binding-related 40-hertz oscillations are evident in the infant brain around 8 months of age, which is the same age at which behavioral and event-related potential evidence indicates the onset of perceptual binding of spatially separated static visual features.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Csibra, G -- Davis, G -- Spratling, M W -- Johnson, M H -- New York, N.Y. -- Science. 2000 Nov 24;290(5496):1582-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Brain and Cognitive Development, School of Psychology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK. g.csibra@bbk.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11090357" target="_blank"〉PubMed〈/a〉
    Keywords: *Electroencephalography ; Evoked Potentials, Visual ; Female ; *Form Perception ; Frontal Lobe/*physiology ; Humans ; Infant ; Male ; Occipital Lobe/physiology ; Parietal Lobe/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2001-12-26
    Description: The circadian clock in the suprachiasmatic nucleus (SCN) is thought to drive daily rhythms of behavior by secreting factors that act locally within the hypothalamus. In a systematic screen, we identified transforming growth factor-alpha (TGF-alpha) as a likely SCN inhibitor of locomotion. TGF-alpha is expressed rhythmically in the SCN, and when infused into the third ventricle it reversibly inhibited locomotor activity and disrupted circadian sleep-wake cycles. These actions are mediated by epidermal growth factor (EGF) receptors on neurons in the hypothalamic subparaventricular zone. Mice with a hypomorphic EGF receptor mutation exhibited excessive daytime locomotor activity and failed to suppress activity when exposed to light. These results implicate EGF receptor signaling in the daily control of locomotor activity, and identify a neural circuit in the hypothalamus that likely mediates the regulation of behavior both by the SCN and the retina.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kramer, A -- Yang, F C -- Snodgrass, P -- Li, X -- Scammell, T E -- Davis, F C -- Weitz, C J -- HD-18686/HD/NICHD NIH HHS/ -- MH62589/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2001 Dec 21;294(5551):2511-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11752569" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Clocks/drug effects/physiology ; Body Temperature/drug effects ; Cerebral Ventricles/metabolism ; Circadian Rhythm/drug effects/*physiology ; Cricetinae ; Darkness ; Epidermal Growth Factor/pharmacology ; Female ; Hypothalamus/*metabolism ; Ligands ; Light ; Male ; Mesocricetus ; Mice ; *Motor Activity/drug effects ; Neural Pathways/physiology ; Neurons/metabolism ; Point Mutation ; Receptor, Epidermal Growth Factor/genetics/*metabolism ; Retina/metabolism ; Retinal Ganglion Cells/metabolism ; Signal Transduction ; Sleep/drug effects/*physiology ; Suprachiasmatic Nucleus/*metabolism ; Transforming Growth Factor alpha/administration & ; dosage/genetics/metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-10-30
    Description: The prefrontal cortex is a higher brain region that regulates thought, behavior, and emotion using representational knowledge, operations often referred to as working memory. We tested the influence of protein kinase C (PKC) intracellular signaling on prefrontal cortical cognitive function and showed that high levels of PKC activity in prefrontal cortex, as seen for example during stress exposure, markedly impair behavioral and electrophysiological measures of working memory. These data suggest that excessive PKC activation can disrupt prefrontal cortical regulation of behavior and thought, possibly contributing to signs of prefrontal cortical dysfunction such as distractibility, impaired judgment, impulsivity, and thought disorder.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Birnbaum, S G -- Yuan, P X -- Wang, M -- Vijayraghavan, S -- Bloom, A K -- Davis, D J -- Gobeske, K T -- Sweatt, J D -- Manji, H K -- Arnsten, A F T -- AG06036/AG/NIA NIH HHS/ -- P50 MH068789/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2004 Oct 29;306(5697):882-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Yale Medical School, 333 Cedar Street, New Haven, CT 06520-8001, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15514161" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenergic alpha-Agonists/pharmacology ; Alkaloids ; Animals ; Benzophenanthridines ; Carbolines/pharmacology ; Electrophysiology ; Enzyme Activation ; Female ; Imidazoles/pharmacology ; Lithium Carbonate/pharmacology ; Macaca mulatta ; Male ; Memory/drug effects/*physiology ; Neurons/drug effects/physiology ; Phenanthridines/pharmacology ; Prefrontal Cortex/enzymology/*physiology ; Protein Kinase C/antagonists & inhibitors/*metabolism ; Rats ; Rats, Sprague-Dawley ; Receptors, Adrenergic, alpha-1/physiology ; Signal Transduction ; Stress, Physiological/physiopathology ; Tetradecanoylphorbol Acetate/pharmacology ; Valproic Acid/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-12-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davis, Mark A -- New York, N.Y. -- Science. 2004 Dec 10;306(5703):1891.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15591186" target="_blank"〉PubMed〈/a〉
    Keywords: *Awards and Prizes ; Female ; Humans ; Male ; Men ; *National Institutes of Health (U.S.) ; *Prejudice ; United States ; *Women
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2004-09-09
    Description: Human genetic diseases that resemble accelerated aging provide useful models for gerontologists. They combine known single-gene mutations with deficits in selected tissues that are reminiscent of changes seen during normal aging. Here, we describe recent progress toward linking molecular and cellular changes with the phenotype seen in two of these disorders. One in particular, Werner syndrome, provides evidence to support the hypothesis that the senescence of somatic cells may be a causal agent of normal aging.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kipling, David -- Davis, Terence -- Ostler, Elizabeth L -- Faragher, Richard G A -- New York, N.Y. -- Science. 2004 Sep 3;305(5689):1426-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15353794" target="_blank"〉PubMed〈/a〉
    Keywords: *Aging ; Animals ; Cell Aging ; Cell Division ; DNA Helicases/genetics/physiology ; Exodeoxyribonucleases ; Female ; Gene Expression ; Humans ; Male ; Mice ; Models, Animal ; Mutation ; Phenotype ; RecQ Helicases ; Telomere/metabolism ; *Werner Syndrome/genetics/pathology/physiopathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-12-18
    Description: The amygdala was more responsive to fearful (larger) eye whites than to happy (smaller) eye whites presented in a masking paradigm that mitigated subjects' awareness of their presence and aberrant nature. These data demonstrate that the amygdala is responsive to elements of.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Whalen, Paul J -- Kagan, Jerome -- Cook, Robert G -- Davis, F Caroline -- Kim, Hackjin -- Polis, Sara -- McLaren, Donald G -- Somerville, Leah H -- McLean, Ashly A -- Maxwell, Jeffrey S -- Johnstone, Tom -- 01866/PHS HHS/ -- 069315/PHS HHS/ -- New York, N.Y. -- Science. 2004 Dec 17;306(5704):2061.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychiatry, W. M. Keck Laboratory for Brain Imaging and Behavior, University of Wisconsin, Madison, WI, USA. pwhalen@wisc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15604401" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Amygdala/*physiology ; *Facial Expression ; *Fear ; Female ; Happiness ; Humans ; Magnetic Resonance Imaging ; Male ; Pattern Recognition, Visual ; Perceptual Masking ; *Sclera
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2004-02-21
    Description: Dietary cholesterol consumption and intestinal cholesterol absorption contribute to plasma cholesterol levels, a risk factor for coronary heart disease. The molecular mechanism of sterol uptake from the lumen of the small intestine is poorly defined. We show that Niemann-Pick C1 Like 1(NPC1L1) protein plays a critical role in the absorption of intestinal cholesterol. NPC1L1 expression is enriched in the small intestine and is in the brush border membrane of enterocytes. Although otherwise phenotypically normal, NPC1L1-deficient mice exhibit a substantial reduction in absorbed cholesterol, which is unaffected by dietary supplementation of bile acids. Ezetimibe, a drug that inhibits cholesterol absorption, had no effect in NPC1L1 knockout mice, suggesting that NPC1L1 resides in an ezetimibe-sensitive pathway responsible for intestinal cholesterol absorption.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Altmann, Scott W -- Davis, Harry R Jr -- Zhu, Li-Ji -- Yao, Xiaorui -- Hoos, Lizbeth M -- Tetzloff, Glen -- Iyer, Sai Prasad N -- Maguire, Maureen -- Golovko, Andrei -- Zeng, Ming -- Wang, Luquan -- Murgolo, Nicholas -- Graziano, Michael P -- New York, N.Y. -- Science. 2004 Feb 20;303(5661):1201-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cardiovascular/Endocrine Research, Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ, 07033-0539, USA. scott.altmann@spcorp.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14976318" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Anticholesteremic Agents/pharmacology ; Azetidines/pharmacology ; Cholesterol/*metabolism ; Cholesterol, Dietary/*metabolism ; Cholic Acid/administration & dosage/pharmacology ; Computational Biology ; Enterocytes/*metabolism ; Ezetimibe ; Female ; Gene Expression Profiling ; Humans ; *Intestinal Absorption/drug effects ; Intestine, Small/metabolism ; Jejunum/metabolism ; Liver/metabolism ; Male ; Membrane Proteins/chemistry/genetics/*metabolism ; Membrane Transport Proteins/chemistry/genetics/*metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Molecular Sequence Data ; Oligonucleotide Array Sequence Analysis ; Proteins/chemistry/genetics/*metabolism ; Rats ; Rats, Sprague-Dawley
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2003-06-14
    Description: Comparison of the gene-expression profiles between adults of Drosophila melanogaster and Drosophila simulans has uncovered the evolution of genes that exhibit sex-dependent regulation. Approximately half the genes showed differences in expression between the species, and among these, approximately 83% involved a gain, loss, increase, decrease, or reversal of sex-biased expression. Most of the interspecific differences in messenger RNA abundance affect male-biased genes. Genes that differ in expression between the species showed functional clustering only if they were sex-biased. Our results suggest that sex-dependent selection may drive changes in expression of many of the most rapidly evolving genes in the Drosophila transcriptome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ranz, Jose M -- Castillo-Davis, Cristian I -- Meiklejohn, Colin D -- Hartl, Daniel L -- New York, N.Y. -- Science. 2003 Jun 13;300(5626):1742-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12805547" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bayes Theorem ; Drosophila/*genetics ; Drosophila melanogaster/*genetics ; *Evolution, Molecular ; Female ; *Gene Expression ; Gene Expression Profiling ; Genes, Insect ; *Genome ; Male ; Mutation ; Nucleic Acid Hybridization ; Oligonucleotide Array Sequence Analysis ; RNA, Messenger/genetics/metabolism ; Selection, Genetic ; Sex Characteristics ; Species Specificity ; *Transcription, Genetic ; X Chromosome/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-01-29
    Description: Wearable sensor technologies are essential to the realization of personalized medicine through continuously monitoring an individual's state of health. Sampling human sweat, which is rich in physiological information, could enable non-invasive monitoring. Previously reported sweat-based and other non-invasive biosensors either can only monitor a single analyte at a time or lack on-site signal processing circuitry and sensor calibration mechanisms for accurate analysis of the physiological state. Given the complexity of sweat secretion, simultaneous and multiplexed screening of target biomarkers is critical and requires full system integration to ensure the accuracy of measurements. Here we present a mechanically flexible and fully integrated (that is, no external analysis is needed) sensor array for multiplexed in situ perspiration analysis, which simultaneously and selectively measures sweat metabolites (such as glucose and lactate) and electrolytes (such as sodium and potassium ions), as well as the skin temperature (to calibrate the response of the sensors). Our work bridges the technological gap between signal transduction, conditioning (amplification and filtering), processing and wireless transmission in wearable biosensors by merging plastic-based sensors that interface with the skin with silicon integrated circuits consolidated on a flexible circuit board for complex signal processing. This application could not have been realized using either of these technologies alone owing to their respective inherent limitations. The wearable system is used to measure the detailed sweat profile of human subjects engaged in prolonged indoor and outdoor physical activities, and to make a real-time assessment of the physiological state of the subjects. This platform enables a wide range of personalized diagnostic and physiological monitoring applications.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gao, Wei -- Emaminejad, Sam -- Nyein, Hnin Yin Yin -- Challa, Samyuktha -- Chen, Kevin -- Peck, Austin -- Fahad, Hossain M -- Ota, Hiroki -- Shiraki, Hiroshi -- Kiriya, Daisuke -- Lien, Der-Hsien -- Brooks, George A -- Davis, Ronald W -- Javey, Ali -- P01 HG000205/HG/NHGRI NIH HHS/ -- England -- Nature. 2016 Jan 28;529(7587):509-14. doi: 10.1038/nature16521.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, USA. ; Berkeley Sensor and Actuator Center, University of California, Berkeley, California 94720, USA. ; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA. ; Stanford Genome Technology Center, Stanford School of Medicine, Palo Alto, California 94304, USA. ; Integrative Biology, University of California, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26819044" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Bicycling/physiology ; Body Water ; Calibration ; Electrolytes/analysis ; Female ; Glucose/analysis ; Healthy Volunteers ; Humans ; Lactic Acid/analysis ; Male ; Monitoring, Physiologic/*instrumentation/*methods ; Precision Medicine/instrumentation/methods ; Reproducibility of Results ; Running/physiology ; Skin ; Skin Temperature ; Sweat/*chemistry ; Young Adult
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...