ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0983
    Keywords: Malaria ; Organelle ; DNA ; Fractionation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Malaria parasites contain two extrachromosomal DNAs, a 6 kb repetitive linear molecule which is assigned on the basis of its genetic content to the mitochondria, and a 35 kb transcriptionally active circular molecule whose intracellular location is not known. We used the polymerase chain reaction to detect and estimate the numbers of both molecules in sub-cellular fractions derived from the rodent parasite Plasmodium yoelii. The two DNA molecules were not coordinately partitioned by the fractionation process, the 6 kb molecule being more abundant, relative to the 35 kb circle, in a fraction enriched for mitochondria, the converse being true for a less dense fraction of unknown identity. This implies that the two molecules are located in different cellular compartments, and is consistent with other evidence suggesting they have different evolutionary origins.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1617-4623
    Keywords: Malaria ; Plasmodium falciparum ; Plastid extrachromosomal DNA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In common with other Apicomplexan parasites, Plasmodium falciparum carries two extrachromosomal DNAs, one of which, the 6 kb element, is undoubtedly mitochondrial. The second, generally referred to as the 35 kb circle, is of unknown provenance, but the nature and organization of its genetic content makes a mitochondrial association unlikely and the molecule has features reminiscent of plastid genomes. We now report the occurrence on the circle of an open reading frame specifying a predicted 470 amino acid protein that shares more than 50% identity with a gene currently known only on the plastome of red algae. This high degree of conservation confirms the 35 kb circle's plastid ancestry, and we speculate that it may have originated from the rhodoplast of an ancient red algal endosymbiont in the progenitor of the Apicomplexa.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...