ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0878
    Keywords: Antigen-presenting cells ; Major histocompatibility complex class II (MHC class II) ; Macrophages ; Dendritic cells ; Meninges ; Dorsal root ganglia ; Spihal cord ; Rat (Wistar, SIV, Brown-Norway: Ch. Rivcr Wiga)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract This report deals with the distribution, morphology and specific topical relationships of bone-marrow-derived cells (free cells) in the spinal meninges and dorsal root ganglia of the normal rat. The morphology of these cells has been studied by transmission and scanning electron microscopy. Cells expressing the major histocompatibility complex (MHC) class II gene product have been recognized by immunofluorescence. At the level of the transmission electron microscope, free cells are found in all layers of the meninges. Many of them display characteristic ultrastructural features of macrophages, whereas others show a highly vacuolated cytoplasm and are endowed with many processes. These elements lack a conspicuous lysosomal system and might represent dendritic cells. Scanning electron microscopy has revealed that free cells contact the cerebrospinal fluid via abundant cytoplasmic processes that cross the cell layers of the pia mater and of the arachnoid. Cells expressing the MHC class II antigen are also found in all layers of the meninges. They are particularly abundant in the layers immediately adjacent to the subarachnoid space, in the neighbourhood of dural vessels, along the spinal roots and in the dural funnels. In addition to the meninges, strong immunoreactivity for MHC class II antigen is observed in the dorsal root ganglia. The ultrastructural and immunohistochemical findings of this study suggest the existence of a well-developed system of immunological surveillance of the subarachnoid space and of the dorsal root ganglia.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 258 (1989), S. 177-182 
    ISSN: 1432-0878
    Keywords: Kidney ; 5′-Nucleotidase ; Adenosine ; Interstitium ; Fibroblasts ; Rat (Wistar)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The hydrolysis of 5′-AMP by 5′-nucleotidase is the main source of adenosine. In various tissues adenosine is a local mediator adjusting the organ work to the available energy. In the kidney it regulates renal hemodynamics, glomerular filtration rate and renin release via specific receptors of the arteriolar walls. By immunocytochemistry we identified interstitial and tubular sites of 5′-nucleotidase in the rat kidney. In the interstitium the enzyme was detected only in the cortical labyrinth, the compartment that comprises all arteriolar vessels besides other putative targets of adenosine. The 5′-nucleotidase-positive cells of the interstitium were identified as fibroblasts. The fibroblasts are in close contact with the tubules as well as with the vessels. Thus, any 5′-AMP released by the tubules into the interstitial space would be converted to adenosine in the direct vicinity of its assumed targets. Adenosine produced by tubular cells would hardly have access to its known targets, since 5′-nucleotidase is restricted to the luminal cell surface. Pathological events affecting the fibroblasts might influence renal function by modifying the interstitial adenosine production.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...